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a b s t r a c t 

Numerical solution of Richards’ equation remains challenging to get robust, accurate and cost-effective results, 
particularly for moving sharp wetting fronts. An adaptive strategy for both space and time is proposed to deal 
with 2D sharp wetting fronts associated with varying and possibly vanishing diffusivity caused by nonlinear- 
ity, heterogeneity and anisotropy. Adaptive time stepping makes nonlinear convergence reliable and backward 
difference formula provides high-order time scheme. Adaptive mesh refinement tracks wetting fronts with an a 
posteriori error indicator. The novelty of this paper consists in using this technique in combination with a weighted 
discontinuous Galerkin framework to better approximate steep wetting fronts by a discontinuity. The potential 
of the overall approach is shown through various examples including analytical and laboratory benchmarks and 
simulation of full-scale multi-materials dam wetting experiment. 
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. Introduction 

Predicting variably-saturated flows in porous media is a major is-
ue for many fields in science and engineering. For example, such flows
rise in soil physics, hydrogeology, environment, agriculture or oil in-
ustry for problems like subsurface contaminant transport, petroleum
eservoir, water resources, surface ponding, etc. 

In the present work, flows in variably-saturated porous media are
escribed by Richards’ equation. What makes Richards’ equation very
ttractive is that it models the porous medium as a whole part including
oth saturated and unsaturated zones. Richards’ equation is a nonlinear
arabolic equation which can degenerate into an elliptic equation under
omplete saturation condition. Richards’ equation has been extensively
sed for numerical simulations by the hydrogeology community, see e.g.
 Thoms et al., 2006; Szymkiewicz, 2013 ). Despite this research effort,
any numerical challenges remain for solving Richards’ equation with

ome simulations being still unreliable and/or expensive ( Farthing and
gden, 2017; Zha et al., 2019 ). This numerical complexity prevented a
ore general use of Richards-based model for a number of applications.

ndeed, the solution of Richards’ equation involves sharp wetting fronts
hich evolve both in space and time and are difficult to resolve. Be-

ides, the simulation must treat simultaneously unsaturated/saturated
egions of parabolic/elliptic natures, several porous media of different
ydraulic properties and possibly fast-changing boundary conditions.
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hese aspects can also lead to steep gradients acting like discontinuities.
onsidering the set of nonlinear functions for hydraulic properties, it is
eldom possible to foresee the behaviour of Richards’ equation and get-
ing numerical solutions can be hard to achieve. Especially, numerical
chemes often fail to converge or need fine discretization, making com-
utation costly. Many numerical methods are dealing with Richards’
quation to treat wetting fronts and heterogeneous soils in various con-
exts. Each of them shows advantages and drawbacks and that is the
eason why research is still undergoing to push back the limits for the
se of Richards’ equation. For instance, to handle layered soils, some re-
ent publications include a Kirchhoff integral transform-based method
 Suk and Park, 2019 ), a transversal method of lines ( Berardi et al.,
020 ), a domain decomposition technique with L-scheme linearization
 Seus et al., 2018 ) and even upscaled models of Richards’ equation for
ractured porous media ( Kumar et al., 2020 ). 

In this paper, a discontinuous Galerkin (DG) method is chosen to
olve Richards’ equation. DG methods are based on a variational formu-
ation in an element-wise fashion, sharing advantages both with finite
lements and finite volumes methods. In particular, they are locally con-
ervative which is crucial in fluid dynamics ( Rivière, 2008 ). Moreover,
he nature of DG formulation enables to work on non-conforming mesh
nd to change locally the degree of polynomial approximation. This is an
mportant benefit since adaptive mesh refinement (AMR), the so-called
 -adaptation, and high-order accuracy, the so-called p -adaptation, be-
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ome possible ( Dolej š í and Feistauer, 2015 ), promoting a growing use
f DG methods for transport phenomena in porous media such as two-
hase flow problems ( Klieber and Rivière, 2006; Bastian, 2014 ). How-
ver, DG methods remain sparsely applied to Richards’ equation. In
007, Li et al. solved Richards’ equation in 1D with a local discontinuous
alerkin method ( Li et al., 2007b; 2007a ). Sochala discretized Richards’
quation through a SIPG mixed DG formulation in 2008 ( Sochala, 2008;
ochala et al., 2009 ). Recently, in 2019, Dolej š í et al. (2019) proposed
 space-time DG method for solving Richards’ equation. 

To reach robustness and accuracy, an adaptive strategy is developed
n this paper. Richards’ equation is known to be a stiff differential equa-
ion with difficult convergence ( Paniconi and Putti, 1994; Lehmann and
ckerer, 1998; List and Radu, 2016 ) so the time discretization and the
onlinear solver have to be addressed carefully. Adaptive mesh refine-
ent will be used to capture moving wetting fronts thanks to a posteriori

stimation. 𝔥 -Adaptation is employed for two-phase flow in porous me-
ia ( Klieber and Rivière, 2006 ) but also for Richards’ equation ( Miller
t al., 2006; Li et al., 2007a ). Making the most of DG methods flexibility,
daptive mesh refinement is combined with a weighted discontinuous
alerkin (WDG) framework which allows discontinuity in the solution
ccording to the nonlinear diffusivity. Following earlier works, this ap-
roach was formulated by Ern, Di Pietro and other collaborators ( Ern
t al., 2008; Di Pietro et al., 2008 ) and by Proft and Rivière under the
ame improved and adapted discontinuous Galerkin methods ( Proft and
ivière, 2006; 2009 ). Application of such strategy for Richards’ equa-

ion, combining adaptive mesh refinement, a posteriori estimation and
DG framework, is the main novelty of the present study. 
The Richards’ equation framework is first recalled in Section 2 . In

ection 3 , Richards’ equation discretization is presented through a DG
ramework and then solved by a nonlinear iterative process aiming to ro-
ustness. Section 4 is dedicated to the adaptive strategy proposed to im-
rove solving of Richards’ equation. Several numerical experiments are
iscussed in Section 5 . In particular, the modelling strategy is tested on
 challenging benchmark case of full-scale wetting of a multi-materials
am. Finally, Section 6 is devoted to some concluding remarks. 

. Model problem 

.1. Richards’ equation 

Richards’ equation is a classical nonlinear parabolic equation used to
escribe flow in unsaturated/saturated zones of an aquifer. Derivation
f Richards’ equation is described for instance in Szymkiewicz (2013) .
ariables in play are 𝜃 the water content [], 𝜓 the pressure head [L] and
 the hydraulic conductivity tensor [L ⋅T 

−1 ]. The mixed formulation
s selected in the present study owing to its versatility ( Farthing and
gden, 2017 ): 

 𝑡 𝜃( 𝜓) − ∇ ⋅ ( 𝕂 ( 𝜓)∇( 𝜓 + 𝑧 ) ) = 0 . (1)

lternative pressure-based or saturation-based formulations have been
iscarded because they are either non-conservative or undefined for
omplete saturation and heterogeneous soils ( Celia et al., 1990 ). The
ixed formulation can be rewritten in the hydraulic head form which

s more common in hydrology: 

 𝑡 𝜃( ℎ − 𝑧 ) − ∇ ⋅ ( 𝕂 ( ℎ − 𝑧 )∇ ℎ ) = 0 , (2)

here ℎ = 𝜓 + 𝑧 is the hydraulic head [L]. One can also add a
ource/sink term Q [T 

−1 ] to Richards’ equation to model various pro-
esses, like bacteria colony or plant roots uptake, or to couple Richards’
quation with free surface flow. 

Solving Eq. (1) requires two constitutive laws: one for hydraulic con-
uctivity and one for water content. Several models have been proposed,
epending on the hydraulic properties of the porous medium. 

The hydraulic conductivity 𝕂 is generally supposed to react to satu-
ation identically for each space direction. This leads to write: 

 ( 𝜓) = 𝕂 𝐾 ( 𝜓) , (3)
s r 

2 
here 𝕂 s the intrinsic or saturated hydraulic conductivity tensor
L ⋅T 

−1 ] and 𝐾 r the relative hydraulic conductivity []. 
For practical purposes, the water content is often described in terms

f effective saturation 𝑆 e []: 

 e ( 𝜓 ) = 

𝜃( 𝜓 ) − 𝜃r 
𝜃s − 𝜃r 

, (4)

here 𝜃s denotes the saturated water content [] and 𝜃r the residual wa-
er content [], corresponding to the maximal and minimal saturations,
espectively. 

The hydraulic properties present two different behaviours depending
n whether the porous media is saturated ( 𝜓 ≥ 0 ) or not ( 𝜓 < 0 ): 

 e ( 𝜓) = 

{ 

1 if 𝜓 ≥ 0 , 
𝑆 e otherwise, 

and 𝐾 r ( 𝜓) = 

{ 

1 if 𝜓 ≥ 0 , 
𝐾 r otherwise. 

(5)

𝑆 e and 𝐾 r are monotonic increasing functions of pressure head 𝜓 in
he unsaturated zone. The water table corresponds to 𝜓 = 0 by defini-
ion and is considered belonging to the saturated zone. The capillary
ringe is the layer above water table where water is raised due to capil-
ary actions. It belongs to the unsaturated zone and there is no standard
efinition for its upper limit. Throughout this paper, several constitutive
aws will be used to model hydraulic properties in the unsaturated zone.
hey are compiled in Table 1 . 

It is worth noting that: 

• under complete saturation, hydraulic properties become constant
and Richards’ equation degenerates into an elliptic equation char-
acterised by fast diffusion; 

• under almost complete unsaturation, hydraulic properties get very
near-zero values which stop diffusion and may be inconvenient nu-
merically; 

• for particular set of parameters, when 𝜓 → 0 − , constitutive laws may
exhibit very steep gradients. 

These constitutive laws are mainly responsible for the numerical
hallenges of Richards’ equation, such as nonlinearities, degenaracies
nd instabilities, which are often observed in the presence of material
eterogeneities or dynamic boundary conditions like seepage boundary
ondition. Special treatment may be done to regularize the constitu-
ive relations ( Jger and Ka čur, 1995; Pop, 2002; Radu et al., 2006 ).
or instance, Dolej š í et al. (2019) modify slightly the functions to avoid
ome types of degeneracy mentioned above and improve the conver-
ence properties. It can cause difficulties for numerical analysis but,
n practice, we find that the convergence of our solving algorithm de-
cribed in Section 3 can be ensured choosing carefully the parameters
f the computations. As a result, no modification on the constitutive
elations is done in this study. 

.2. Seepage boundary condition 

The seepage boundary condition is specific to subsurface model
 Scudeler et al., 2017 ). This condition is used to model the interface
etween a porous medium and the atmosphere. If the porous medium
s saturated and an outflow occurs, then water pours out at atmospheric
ressure: 𝜓 = 0 ⟺ ℎ = 𝑧 . Otherwise, the interface acts as an impervi-
us boundary and there is no flux. This condition mimics an outflow
ondition. Fig. 1 depicts the situation. The treatment of the seepage
oundary condition is difficult because the length of seepage face is
nknown a priori: it depends on the sought solution. 

There are many ways to express and realize the seepage boundary
ondition. A simple and common approach is to refer to its base defini-
ion by considering a switch between a Dirichlet 𝜓 D and a Neumann 𝑞 N 
oundary condition ( Cooley, 1983; Beaugendre et al., 2006; Š im ů nek
t al., 2009; Scudeler et al., 2017 ): 
 

ℎ = 𝑧 if ℎ ≥ 𝑧 and − 𝕂 ( ℎ − 𝑧 )∇ ℎ ⋅ 𝒏 > 0 , 
− 𝕂 ( ℎ − 𝑧 )∇ ℎ ⋅ 𝒏 = 0 otherwise. 

(6) 
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Table 1 

Hydraulic relations used in this paper. 

Name Expression Parameters 

Gardner–Irmay relations (1958) 

( Irmay, 1954; Gardner, 1958 ) 

𝑆 e = 𝑒 
𝛼𝜓 

𝑚 𝐾 r = 𝑒 𝛼𝜓 𝛼: pore-size distribution [-] 𝑚 : tortuosity [-] 

Vachaud’s relations (1971) 

( Vachaud and Thony, 1971 ) 

𝑆 e = 
𝐶 

𝐶+ |𝜓|D 𝐾 r = 𝐴 

𝐴 + |𝜓|𝐵 𝐴, 𝐶: empirical shape parameters [L B ; D ] 𝐵, 𝐷: empirical shape parameters [] 

Van Genuchten–Mualem relations 

(1980) ( Mualem, 1976; van 

Genuchten, 1980 ) 

𝑆 e = ( 1 + ( 𝛼|𝜓|) 𝑛 ) − 𝑚 𝐾 r = 
𝑆 𝑙 e ( 1 − ( 1 − 𝑆 

1 
𝑚 

e ) 𝑚 ) 2 
𝑙 = 

{ 

0 . 5 for 

1 for 

Mualem (1976) 

Burdine (1953) : pore connectivity [] 

𝛼: parameter linked to air entry pressure inverse [L −1 ] 

𝑛 > 1 : pore-size distribution [] 

𝑚 = 1 − 1 
𝑛 

: pore-size distribution [] 

Fig. 1. Seepage modelling by the boundary condition. 
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s  
he realization of such condition should be done inside the nonlinear
terative process according to the previous solution guess at a local level.
owever, it is not always the case because of the involved numerical
ethods and discretization schemes. Then, the exit point is searched

teratively until a convergence criterion is reached according to different
echniques. 

Alternatively, the seepage boundary condition may be interpreted as
 nonlinear Robin boundary condition: 

 S ( ℎ )( ℎ − 𝑧 ) − ( 1 − 𝟙 S ( ℎ ) ) 𝕂 ( ℎ − 𝑧 )∇ ℎ ⋅ 𝒏 = 0 , (7)

here the seepage indicator function is: 

 S ∶ ΓS → {0 , 1} (8) 

 ↦

{ 

1 if ℎ ≥ 𝑧 and − 𝕂 ( ℎ − 𝑧 )∇ ℎ ⋅ 𝒏 > 0 , 
0 otherwise. 

(9) 

This compact formulation will be used here for the discretization
o incorporate directly the seepage boundary condition into the weak
ormulation, keeping in mind that it encompasses a mix of a Dirichlet
nd a Neumann boundary conditions whose actual realization is done
uch as in Eq. (6) . 

. Numerical methods 

.1. Discontinuous Galerkin discretization 

More careful developments about discontinuous Galerkin (DG) meth-
ds can be found in Rivière (2008) or Dolej š í and Feistauer (2015) .
et 𝑑 ∈ {1 , 2 , 3} be the dimension. The porous medium is represented
y the computational domain Ω ⊂ ℝ 

𝑑 of boundary 𝜕Ω and the final
ime is 𝑇 ∈ ℝ 

∗ 
+ . The boundary 𝜕Ω is subdivided into three mutually

isjoint boundaries, 𝜕Ω = ΓD ∪ ΓN ∪ ΓS , corresponding to the Dirichlet,
eumann and seepage boundary conditions respectively. The following
roblem is considered: 

nd ℎ ( 𝒙 , 𝑡 ) ∶ Ω × ( 0 , 𝑇 ) ⟶ ℝ such that 
3 
 

 

 

 

 

 

 

𝜕 𝑡 𝜃( ℎ − 𝑧 ) − ∇ ⋅ ( 𝕂 ( ℎ − 𝑧 )∇ ℎ ) = 0 , in Ω × ( 0 , 𝑇 ) , 
ℎ = ℎ 0 , in Ω × {0} , 
ℎ = ℎ D , on ΓD × ( 0 , 𝑇 ) , 
− 𝕂 ( ℎ − 𝑧 )∇ ℎ ⋅ 𝒏 = 𝑞 N , on ΓN × ( 0 , 𝑇 ) , 
𝟙 S ( ℎ )( ℎ − 𝑧 ) − ( 1 − 𝟙 S ( ℎ ) ) 𝕂 ( ℎ − 𝑧 )∇ ℎ ⋅ 𝒏 = 0 , on ΓS × ( 0 , 𝑇 ) . 

(10) 

The time duration ( 0 , 𝑇 ) is subdivided into 𝑁 time intervals such
hat 0 = 𝑡 0 < 𝑡 1 < … < 𝑡 N = 𝑇 . Let 𝑛 ∈ ℕ , 0 < 𝑛 ≤ 𝑁 : if the time interval
 

𝑛 = [ 𝑡 𝑛 −1 , 𝑡 𝑛 ] is considered, the corresponding time step is 𝜏𝑛 = 𝑡 𝑛 − 𝑡 𝑛 −1 .
Ω is subdivided into 𝑁 𝐸 mutually disjoint polygonal elements 𝐸

orming a mesh. The mesh at the time partition 𝑇 𝑛 is denoted by
 

𝑛 
𝔥 = { 𝐸 

𝑛 } 𝐸⊂Ω. So, Ω = 

⋃
𝐸∈ 𝑛 𝔥 

𝐸. Moreover, the boundary of one element

 ∈  𝑛 𝔥 is 𝜕𝐸 while its diameter 𝔥 𝐸 is defined by: 

 𝐸 ∶= sup 
𝒙 , 𝒚 ∈𝐸 

|𝒙 − 𝒚 |. (11)

or every mesh  𝑛 𝔥 , the space step is set as: 

 

𝑛 ∶= max 
𝐸∈ 𝑛 𝔥 

( 𝔥 𝐸 ) . (12)

The set of all open faces of all elements 𝐸 ∈  𝑛 𝔥 is denoted by  

𝑛 
𝔥 .

urthermore, these definitions stand: 

 

𝑛 
𝔥 , D ∶= 

⋃
𝐹∈ΓD 

𝐹 ,  

𝑛 
𝔥 , N ∶= 

⋃
𝐹∈ΓN 

𝐹 ,  

𝑛 
𝔥 , S ∶= 

⋃
𝐹∈ΓS 

𝐹 (13) 

 

𝑛 
𝔥 , B ∶=  

𝑛 
𝔥 , D ∪  

𝑛 
𝔥 , N ∪  

𝑛 
𝔥 , S ,  

𝑛 
𝔥 , I ∶=  

𝑛 
𝔥 ⧵  

𝑛 
𝔥 , B . (14) 

or each face 𝐹 ∈  

𝑛 
𝔥 , there is a unit normal vector 𝒏 𝑭 . For 𝐹 ∈  

𝑛 
𝔥 , I , its

rientation is arbitrary but kept fixed and, for 𝐹 ∈  

𝑛 
𝔥 ,𝐵 , it is oriented

utward. 
Let two neighbouring elements 𝐸 l and 𝐸 r sharing one face 𝐹 ∈  

𝑛 
𝔥 , I .

here are two traces of a function 𝑢 along 𝐹 denoted by 𝑢 l and 𝑢 r : 

 ∈ 𝐹 , 𝑢 l ( 𝒙 ) ∶= lim 

𝜀 →0 + 
𝑢 ( 𝒙 + 𝜀 𝒏 𝑭 ) , 𝒙 ∈ 𝐹 , 𝑢 r ( 𝒙 ) ∶= lim 

𝜀 →0 − 
𝑢 ( 𝒙 + 𝜀 𝒏 𝑭 ) . 

(15) 

ormally, the jump and the mean of the function 𝑢 across a face 𝐹 ∈  

𝑛 
𝔥 , I 

re defined respectively by: 

 𝑢 � ∶= 𝑢 l − 𝑢 r , {[ 𝑢 ]} ∶= 

1 
2 
( 𝑢 l + 𝑢 r ) . (16)

n the case that 𝐹 ∈  

𝑛 
𝔥 , B , � 𝑢 � = {[ 𝑢 ]} = 𝑢 l where 𝑢 l is the trace of the func-

ion 𝑢 from the element which holds 𝐹 . Throughout this paper, the quan-
ity 𝔥 𝐹 denotes the length of 𝐹 ∈  

𝑛 
𝔥 and 𝑝 𝐹 the mean of polynomial

egree of neighbouring elements: 

 𝐹 ∶= |𝐹 |, 𝑝 𝐹 ∶= 

√
{[ 𝑝 2 ]} . (17)

In the following derivation of the DG variational formulation, several
nterior penalty methods are considered. Their numerical properties are
lightly different. Further information are available in Rivière (2008) ;
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olej š í and Feistauer (2015) for example. They use discontinuous ap-
roximations over the mesh  𝑛 𝔥 defining a so-called broken Sobolev

pace 𝐻 

𝑠 (  𝑛 𝔥 ) with 𝑠 > 3∕2 . The solution is sought in a subspace of this

roken Sobolev space, taken to be: 

 𝑝 (  𝑛 𝔥 ) ∶= { 𝑣 ∈ 𝐿 

2 (Ω) ∶ 𝑣 |||𝐸 ∈ ℙ 𝑝 ( 𝐸) , ∀𝐸 ∈  𝑛 𝔥 } , (18)

here ℙ 𝑝 ( 𝐸) denotes the space of polynomial functions on 𝐸 of degree
ess than 𝑝 ∈ ℕ . 

Eq. (10) is multiplied by a test function 𝑣 ∈ 𝑆 𝑝 (  𝑛 𝔥 ) and then inte-

rated on each element 𝐸 ∈  𝑛 𝔥 . Green’s theorem is used element-wise

efore summing over all elements in  𝑛 𝔥 . The Neumann boundary con-

ition has appeared naturally within the formulation and has been sub-
tituted. So it stands for the homogeneous Neumann part of the seepage
oundary condition. 

On one hand, knowing ∀𝑢, 𝑣 ∈ 𝑆 𝑝 (  𝑛 𝔥 ) , � 𝑢𝑣 � = {[ 𝑢 ]} � 𝑣 � + {[ 𝑣 ]} � 𝑢 � and as-

uming � 𝕂 ( ℎ − 𝑧 )∇ ℎ ⋅ 𝒏 𝑭 � = 0 because this quantity is smooth enough,
roduct jump is decomposed and simplified where it is possible. 

On the other hand, two penalty terms are considered. One mimics
he solution continuity by constraining the interior solution jump to be
ero, and one enforces the Dirichlet boundary condition, including the
emaining part of the seepage boundary condition. If the solution is a
ontinuous function satisfying the Dirichlet boundary conditions, the
wo penalty terms are vanishing so they can be added to the formulation:

 I ( ℎ, 𝑣 ) = 

∑
𝐹∈ I 𝔥 

∫𝐹 𝜚 
I 
𝐹 
� ℎ �� 𝑣 � d 𝐹 , 𝐽 D ( ℎ, 𝑣 ) = 

∑
𝐹∈ D 𝔥 

∫𝐹 𝜚 
D 
𝐹 
( ℎ − ℎ D ) 𝑣 d 𝐹 . 

(19) 

he interior and Dirichlet penalty weights are set as: 

 

I 
𝐹 
= 

𝜎I 
𝐹 
𝛾𝐹 

𝜇𝐹 
and 𝜚 D 

𝐹 
= 

𝜎D 
𝐹 
𝛾𝐹 

𝜇𝐹 
. (20)

here the face measure is defined as 𝜇𝐹 = 

𝔥 𝐹 
𝑝 𝐹 

2 and where 𝜎I 
𝐹 
, 𝜎D 

𝐹 
and

𝐹 are suitably chosen positive constants. 𝜎I 
𝐹 

and 𝜎D 
𝐹 

are user-defined
arameters which must be above a threshold value to provide coerciv-
ty and guarantee stability for some of the DG methods ( Epshteyn and
ivière, 2007 ). 𝛾 is a diffusion penalty coefficient set to one gener-
lly whereas some studies consider other values, see e.g. Schötzau and
hu (2009) . 

A first weak formulation rises but it is not is not symmetric between
he unknown ℎ and the test function 𝑣 . Making the formulation sym-
etrical can be useful to preserve the natural symmetry in the discrete
iffusion operator, to use appropriate solvers or to enhance numerical
roperties of the formulation. This can be done by adding the corre-
ponding symmetric term which vanishes because � ℎ � = 0 if ℎ is a suffi-
iently smooth function. 

Finally, the space semidiscretization reads: 

find ℎ ∈ 𝑆 𝑝 (  𝑛 𝔥 ) such that ∀𝑣 ∈ 𝑆 𝑝 (  𝑛 𝔥 ) , 
𝑚 𝔥 ,𝑛 ( 𝜕 𝑡 𝜃( ℎ − 𝑧 ) , 𝑣 ) + 𝑎 𝔥 ,𝑛 ( ℎ, 𝑣 ) = 𝑙 𝔥 ,𝑛 ( 𝑣 ) , (21) 

here the DG bilinear forms, 𝑚 and 𝑎, and linear form 𝑙 are: 

 𝔥 ,𝑛 ( 𝜕 𝑡 𝜃( ℎ − 𝑧 ) , 𝑣 ) = 

∑
𝐸∈ 𝔥 ∫𝐸 

𝜕 𝑡 𝜃( ℎ − 𝑧 ) 𝑣 d 𝐸, (22) 

 𝔥 ,𝑛 ( ℎ, 𝑣 ) = 

∑
𝐸∈ 𝔥 ∫𝐸 

𝕂 ( ℎ − 𝑧 )∇ ℎ ⋅ ∇ 𝑣 d 𝐸 

− 

∑
𝐹∈ I 𝔥 

∫𝐹 {[ 𝕂 ( ℎ − 𝑧 )∇ ℎ ⋅ 𝒏 𝑭 ]} � 𝑣 � d 𝐹 

− 

∑
𝐹∈ D 𝔥 

∫𝐹 𝕂 ( ℎ − 𝑧 )∇ ℎ ⋅ 𝒏 𝑭 𝑣 d 𝐹 + 

∑
𝐹∈ D 𝔥 

∫𝐹 𝜚 
D 
𝐹 
ℎ𝑣 d 𝐹 
4 
− 

∑
𝐹∈ 𝑆 𝔥 

∫𝐹 𝟙 S ( ℎ ) 𝕂 ( ℎ − 𝑧 )∇ ℎ ⋅ 𝒏 𝑭 𝑣 d 𝐹 

+ 

∑
𝐹∈ I 𝔥 

∫𝐹 𝜚 
I 
𝐹 
� ℎ �� 𝑣 � d 𝐹 + 

∑
𝐹∈ 𝑆 𝔥 

∫𝐹 𝜚 
D 
𝐹 
𝟙 S ( ℎ ) ℎ𝑣 d 𝐹 

− Θ
∑
𝐹∈ I 𝔥 

∫𝐹 {[ 𝕂 ( ℎ − 𝑧 )∇ 𝑣 ⋅ 𝒏 𝑭 ]} � ℎ � d 𝐹 

− Θ
∑

𝐹∈ D 𝔥 

∫𝐹 𝕂 ( ℎ − 𝑧 )∇ 𝑣 ⋅ 𝒏 𝑭 ℎ d 𝐹 

− Θ
∑

𝐹∈ 𝑆 𝔥 
∫𝐹 𝟙 S ( ℎ ) 𝕂 ( ℎ − 𝑧 )∇ 𝑣 ⋅ 𝒏 𝑭 ℎ d 𝐹 , (23) 

 𝔥 ,𝑛 ( 𝑣 ) = 

∑
𝐹∈ D 𝔥 

∫𝐹 𝜚 
D 
𝐹 
ℎ D 𝑣 d 𝐹 + 

∑
𝐹∈ 𝑆 𝔥 

∫𝐹 𝜚 
D 
𝐹 
𝟙 S ( ℎ ) 𝑧𝑣 d 𝐹 − 

∑
𝐹∈ N 𝔥 

∫𝐹 𝑞 N 𝑣 d 𝐹 

− Θ
∑

𝐹∈ D 𝔥 

∫𝐹 𝕂 ( ℎ − 𝑧 )∇ 𝑣 ⋅ 𝒏 𝑭 ℎ D d 𝐹 

− Θ
∑

𝐹∈ 𝑆 𝔥 
∫𝐹 𝟙 S ( ℎ ) 𝕂 ( ℎ − 𝑧 )∇ 𝑣 ⋅ 𝒏 𝑭 𝑧 d 𝐹 . (24) 

= {−1 , 0 , 1} is a constant leading to different symmetric versions of
he DG formulation listed in Table 2 . 

The seepage boundary condition is treated numerically thanks to the
ndicator function 𝟙 S which alternates dynamically between the Dirich-
et part when 𝟙 S = 1 and the Neumann part for 𝟙 S = 0 , directly in the
sual weak framework of the DG methods. This treatment can model
any physical situations, like multiple seepage faces simultaneously,

ecause it does not require any assumption about the mesh or seepage
ace ( Scudeler et al., 2017 ). 

This treatment was also done by Dolej š í et al. (2019) where they
ointed out this is a great benefit compared to conforming FE meth-
ds which need to modify the FE space or use numerical tricks, result-
ng in difficult implementation. However, the indicator function 𝟙 S is
ot differentiable which causes difficulties for the numerical analysis. A
egularization of this function can be done ( Schweizer, 2007; Pop and
chweizer, 2011 ). For example, Dolej š í et al. (2019) smoothed the in-
icator function 𝟙 𝐹 to avoid a brutal switch between the values 0 and
. In this work, no regularization is performed because numerical ex-
eriments do not show major convergence solver problems. Besides, DG
ethods handle already discontinuities and weak penalty naturally. This
akes the numerical scheme even more simple. 

.2. Time discretization 

To get the fully discrete DG formulation, the time derivative has now
o be discretized. Such a procedure which takes care of space discretiza-
ion before time discretization is called the method of lines. It is used
ommonly by others studies for Richards’ equation, see e.g. ( Miller et al.,
006; Li et al., 2007b; Farthing and Ogden, 2017 ). 

Backward differentiation formula (BDF) are implicit numerical in-
egration methods especially used for stiff differential equations thanks
o their wide region of stability. These linear multistep methods use 𝑞
lready computed solutions to produce a method of order 𝑞 ≤ 6 . Anal-
sis can be found in Sli and Mayers (2003) ; Dolej š í and Vlasák (2008) .
he 1-step BDF is the backward Euler scheme. For this study, BDF are

nteresting because they provide high-order accuracy in time which is
uitable if one wants to reach high-order in space without loss of gain.
he following notation will be used for any function 𝑢 ∈ 𝐿 

2 ( 0 , 𝑇 ; Ω) : 

𝑛 ∈ ℕ + , 𝑢 
𝑛 ∶= 𝑢 ( 𝒙 , 𝑡 𝑛 ) . (25)
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Table 2 

Different types of DG methods. 

Symmetrization 

Θ = −1 Θ = 0 Θ = 1 

Penalization ∀𝐹 ∈  𝔥 , 𝜎I 
𝐹 
= 𝜎D 

𝐹 
= 0 OBB method – global element method 

∀𝐹 ∈  𝔥 , 𝜎I 
𝐹 
≠ 0 , 𝜎D 

𝐹 
≠ 0 NIPG IIPG SIPG 

NIPG, non-symmetric interior penalty Galerkin; SIPG, symmetric interior penalty Galerkin; 
IIPG, incomplete interior penalty Galerkin; OBB method, Oden–Baumann–Babu š ka method. 

Table 3 

BDF coefficients 𝛼𝑞,𝑘 for all methods. 

𝒒 𝟏 1 −1 
𝟐 3 

2 
−2 1 

2 
𝟑 11 

6 
−3 3 

2 
− 1 

3 
𝟒 25 

12 
−4 3 − 4 

3 
1 
4 

𝟓 137 
60 

−5 5 − 10 
3 

5 
4 

− 1 
5 

𝟔 49 
20 

−6 15 
2 

− 20 
3 

15 
4 

− 6 
5 

1 
6 
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The DG formulation in Eq. (21) is integrated over 𝑇 𝑛 and the time
ntegral is approximated by the BDF methods of 0 < 𝑞 < 7 steps: 

nd a sequence of ( ℎ 𝑛 ) 𝑛 ∈ℕ + ∈ 𝑆 𝑝 (  𝑛 𝔥 ) such that 
 

ℎ 0 = ℎ 0 , 

∀𝑣 ∈ 𝑆 𝑝 (  𝑛 𝔥 ) , 𝑚 𝔥 ,𝑛 ( 
∑𝑞 

𝑘 =0 
𝛼𝑞,𝑘 

𝜏𝑛 
𝜃( ℎ 𝑛 +1− 𝑘 − 𝑧 ) , 𝑣 ) + 𝑎 𝔥 ,𝑛 ( ℎ 𝑛 +1 , 𝑣 ) = 𝑙 𝔥 ,𝑛 ( 𝑣, 𝑡 𝑛 +1 ) , 

(26) 

here BDF coefficients are given in Table 3 . 
However, stability of BDF methods has some restrictions. Only BDF

ethods of order 1 and 2 are A-stable according to the second Dahlquist
arrier for implicit linear multistep methods as defined and proved in
ahlquist (1963) . BDF methods of order 3 to 6 are conditionally stable
r A ( 𝛼) -stable where 𝛼 decreases with the order, see e.g. Hairer and
anner (1996) ; Ascher and Petzold (1998) . Then, time stepsizes have

o be small enough to make the method stable. BDF methods of order
 > 6 are unconditionally unstable so they cannot be used. 

BDF methods presented here are based on fixed time steps so ini-
ialization and a change of time stepsize has to be treated carefully.
or a scheme with 𝑞-step BDF, the first time step is subdivided into as
any times as necessary to compute the sub-time steps with an increas-

ng sequence of lower-order BDF methods. The remaining next macro-
ime steps are still subdivided while the number of computed solution,
tored gradually, is not sufficient to go on with the 𝑞-step BDF method.
orking with BDF methods of variable time stepsize is possible using

ivided differences-based formula but with some restrictions on time
tep variations to keep stability. This is done for Richards’ equation
n Clément (2021) following the method of Hay et al. (2015) . For this
tudy, the backward Euler scheme will be mainly used because it pro-
ides good stability properties and remains simple to work with adaptive
ime stepping. For Tracy’s benchmark, the time step is kept unchanged
o deal with high-order BDF methods which are necessary to decrease
ime error regarding space error. 

This study uses the mixed form of Richards’ equation (physically
ass conservative) and DG methods (numerically local mass conserva-

ive). Then, mass conservation should be very good which is checked,
lobally at machine precision and locally with small discrepancies, in
lément (2021) . 

.3. Linearization 

Richards’ equation is a nonlinear equation usually solved by an iter-
tive procedure such as fixed-point iteration (also called Picard’s) or
ewton–Raphson method whose choice is determining for computa-
5 
ion time performances and convergence. Lots of derived methods ex-
st: modified Newton–Raphson, mixed Picard–Newton, quasi-Newton,
-scheme, etc. Studies have been carried out to compare these meth-
ds, and others, for solving Richards’ equation for various problems
 Paniconi and Putti, 1994; Lehmann and Ackerer, 1998; List and Radu,
016 ). They emphasize that fixed-point iteration and even Newton–
aphson scheme are very sensitive and do not converge systematically
ccording to Richards’ equation’s formulations, initial and boundary
onditions and because of the nonlinearities of constitutive laws. In
articular, the nonlinear iterative solver can oscillate between two so-
utions. There are still recent and significant works on this topic like
nderson acceleration ( Lott et al., 2012 ), nested Newton’s type algo-
ithm ( Casulli and Zanolli, 2010 ) or modified L-schemes ( Mitra and
op, 2019 ). For this study, a damped Newton–Raphson method and a
xed-point method were implemented. Let 𝑚 be the number of the non-

inear iteration. The residual of Eq. (26) is expressed as: 

 𝔥 ,𝑛 ( ℎ 𝑛 +1 , 𝑣 ) ∶= 𝑚 𝔥 ,𝑛 ( 
𝑞 ∑

𝑘 =0 

𝛼𝑠,𝑘 

𝜏𝑛 
𝜃( ℎ 𝑛 +1− 𝑘 − 𝑧 ) , 𝑣 ) + 𝑎 𝔥 ,𝑛 ( ℎ 𝑛 +1 , 𝑣 ) − 𝑙 𝔥 ,𝑛 ( 𝑣 ; 𝑡 𝑛 +1 ) . 

(27) 

he difference between two successive iterations is written 𝛿𝑛 +1 ,𝑚 
ℎ 

∶=
 

𝑛 +1 ,𝑚 +1 − ℎ 𝑛 +1 ,𝑚 so the iterative procedure reads: 
 

d 𝑟 𝔥 ,𝑛 ( ℎ 𝑛 +1 ,𝑚 ,𝑣 ) 
d ℎ 𝑛 +1 ,𝑚 𝛿

𝑛 +1 ,𝑚 
ℎ 

= − 𝑟 𝔥 ,𝑛 ( ℎ 𝑛 +1 ,𝑚 , 𝑣 ) , 
ℎ 𝑛 +1 ,𝑚 +1 = ℎ 𝑛 +1 ,𝑚 + 𝛿

𝑛 +1 ,𝑚 
ℎ 

. 
(28) 

Underlying ideas are already described in Lehmann and Ack-
rer (1998) and have just been adapted here to the DG system. Roughly
peaking, a fixed-point method is obtained from the Newton–Raphson

ethod by avoiding the first derivative terms inside 
d 𝑟 𝔥 ,𝑛 ( ℎ 𝑛 +1 ,𝑚 ,𝑣 ) 

d ℎ 𝑛 +1 ,𝑚 . The

amped Newton–Raphson method relaxes the increment 𝛿𝑛 +1 ,𝑚 
ℎ 

while
he new residual is greater than the previous one. Such a procedure is
escribed in Dolej š í et al. (2019) . One important choice for nonlinear
terative process is the stopping criterion which is set for this study as:

‖𝑟 𝔥 ,𝑛 ( ℎ 𝑛 +1 ,𝑚 , 𝑣 ) ‖𝐿 2 (Ω) ‖𝑎 𝔥 ,𝑛 ( ℎ 𝑛 +1 , 𝑣 ) ‖𝐿 2 (Ω) < 𝜀 1 and 
‖𝛿𝑛 +1 ,𝑚 

ℎ 
‖𝐿 2 (Ω) ‖ℎ 𝑛 +1 ,𝑚 ‖𝐿 2 (Ω) < 𝜀 2 , (29)

here 𝜀 1 , 𝜀 2 are a user-defined tolerances. These two criteria are rela-
ive in order to be independent from the characteristic quantities of the
roblem. The first criterion is residual and the second one is incremental.
he numerical tests of Section 5 were carried out with the fixed-point
ethod because it was more robust concerning initialization. 

For each nonlinear iteration, the linear system has to be constructed
nd solved. We use an in-house direct solver based on LU decomposition
nd working with skyline matrix storage. 

.4. Adaptive time stepping 

Time adaptation is motivated by the convergence of the nonlin-
ar solver. On one hand, transient simulations have difficulties to con-
erge if the time step is too large but, on the other hand, shorter time
teps mean more time steps and so, a longer computational time. That
s the reason why time adaptation is very attractive and common for
ichards’ equation. Different strategies can be used to adjust the time
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Fig. 2. AMR Strategy: (a) Block mesh; (b) Level of mesh refinement; (c) mesh 
generation; (d) Morton numbering. 

Fig. 3. Mesh refinement for quadrangle and triangle using quadtree. 
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tep ( Farthing and Ogden, 2017 ), either heuristic and mainly based on
onvergence performance of the nonlinear solver or rational and based
n error control. The latter ones are generally more efficient but heuris-
ic methods remains a relevant approach due to their simplicity. 

For this study, the time step is adjusted heuristically according to
he previous number of iterations 𝑁 it from the nonlinear solver such
s ( Bergamaschi and Putti, 1999; Thoms et al., 2006 ). Indeed, the time
tepsize has a direct effect on the convergence of the solver. The simula-
ions begin with a time step 𝜏0 . Then, the future time steps are calculated
ccordingly to the following rule: each time step is kept if convergence
t the previous time iteration is achieved between 𝑚 it and 𝑊 it nonlinear
terations, it is increased by an amplification factor 𝜆amp if the conver-
ence requires fewer than 𝑚 it nonlinear iterations and it is decreased
y a reduction factor 𝜆red if the convergence requires more than 𝑀 it 
onlinear iterations. In the case where the convergence is not fulfilled
ecause of a solver failure (poor initial guess, bad condition number) or
ecause the nonlinear iterations go over a prescribed maximum bound
 it , the time step is started again (back-stepping) using a stepsize re-

uced by 𝜆red . The time stepping scheme to choose the next time step
𝑛 +1 is calculated from the previous one 𝜏𝑛 can be summarised with: 

 

 

 

 

 

 

 

 

 

𝜏𝑛 +1 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜆amp 𝜏

𝑛 if 𝑁 it ≤ 𝑚 it , 

𝜏𝑛 if 𝑚 it < 𝑁 it ≤ 𝑀 it , 

𝜆red 𝜏
𝑛 if 𝑀 it < 𝑁 it ≤ 𝑊 it , 

𝜏𝑛 = 𝜆red 𝜏
𝑛 if 𝑊 it < 𝑁 it 

or if the solver has failed (time step is started again). 

(30) 

he factors 0 < 𝜆red < 1 and 1 < 𝜆amp as well as the threshold values 0 <
 it ≤ 𝑀 it < 𝑊 it are prescribed by the user and found empirically. Default
alues are 𝜆amp = 2 , 𝜆red = 0 . 5 , 𝑚 it = 3 , 𝑀 it = 7 and 𝑊 it = 10 . A minimum
ime step can be defined to avoid excessive small time steps. 

With this approach, the nonlinear solver is more robust because the
ime step is adjusted until success of convergence independently on 𝜏0 .
hanks to the amplification/reduction coefficients, the time step is ad-

usted smoothly. Nevertheless, the method depends on fixed empirical
arameters and does not provide an optimal time step. The resulting
oss/gain in computational time is difficult to assess in regards to bal-
nce between nonlinear iterations number and time steps length. 

. Adaptive strategy 

.1. Adaptive mesh refinement 

The Adaptive Mesh Refinement techniques (AMR) are now widely
sed and have since proven their efficiency, whether on 2D or 3D mesh,
tructured or unstructured mesh, conforming or not conforming mesh,
ith domain decomposition or not, see e.g. ( Min and Gibou, 2007;
osasso et al., 2004; Fuster et al., 2009; Coupez and Hachem, 2013 ). 

In this work, applications with complex geometries are aimed, or
ven later couplings of models on hybrid mesh. This is why, as in a pre-
ious work ( Altazin et al., 2016 ), a non conforming unstructured mesh
s used. Therefore, although computing time may be lost compared to
ully structured Cartesian codes, Block-Based Adaptive Mesh Refinement
trategy is adopted. In accordance with the simulations presented in this
aper, only the bidimensional case is presented. The strategy adopted is
hen as follows and illustrated in the Fig. 2 . 

The unstructured mesh is composed of quadrilateral and/or triangu-
ar elements, where each element, as in Altazin et al. (2016) , defines a
oot element or block , see Fig. 2 (a). Then, a mesh refinement level is de-
ned for each block, initially by the user and thereafter in accordance
ith the chosen mesh refinement criterion, see Fig. 2 (b). Coarsening
nd refinement are decided according to threshold values 0 < 𝛽c < 𝛽r .
f 𝜂 denotes the block-level error estimate, three situations are encoun-
ered: 

• For 𝛽c < 𝜂 < 𝛽r , the block remains unchanged and so for the related
elements; 
6 
• For 𝛽r < 𝜂, the block is refined so its elements are split into four
isotropic subelements; 

• For 𝜂 < 𝛽c , the block is coarsened so four neighbouring subelements
are merged into one element. 

Limitations of such selection are described in Pons and Er-
oy (2019) as well as a procedure to overcome them. The mesh refine-
ent level is adapted according to the rule that the ratio of mesh refine-
ent should not exceed 2 between two neighbouring blocks. As illus-

rated in Ersoy et al. (2013) , this constraint allows smooth transitions
etween refined and unrefined regions. The mesh is then built using a
uadtree graph (available for quadrangle and triangle) in order to define
asily and precisely the neighbouring elements of each face. This pro-
edure is pursued until the desired level of mesh refinement is reached
s shown in Fig. 2 (c). In the case of evolutionary problems, this implies
requent remeshing to follow the phenomenon studied. This is why we
refer to widen the stencil with a coarse root mesh, namely blocks, and
herefore to use the whole quadtree graph, in order to remesh less of-
en. It is illustrated for quadrangles and triangles in Fig. 3 . Finally, a
pace filing curve using Morton numbering (Z-order) is built in order to
umber easily the degrees of freedom line in Fig. 2 (d). 

During a simulation, if a mesh refinement or coarsening process takes
lace, a new evaluation of the unknown field must be carried out. The
rolongation (refinement) and restriction (coarsening) process are facili-
ated by the fact that the quadtree graph connect explicitly the “mother ”
lement to its four “daughter’ elements. To do that, one may use local
nterpolation/extrapolation. This is not straightforward in practice be-
ause it requires to identify the number of points and their position
n the element to construct a right-determined system giving a fairly
lose solution. In the present study, the projection is made by solving
 local DG problem. This technique gives good degrees of freedom by
erforming calculations at quadrature points. The element-wise weak
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ormulation corresponding to ℎ 𝐸 𝑛𝑒𝑤 = ℎ 𝐸 old 
reads: 

𝐸 new 

ℎ 𝐸 new 
𝑣 d 𝐸 new = ∫𝐸 new ℎ 𝐸 old 𝑣 d 𝐸 old . (31)

hen, mass matrix can be used to project the solution on the new mesh.
his method is also used to enforce the initial condition ℎ = ℎ 0 . 

.2. A posteriori error estimation 

An a posteriori error indicator is employed to show how a
imple quantity linked to problem physics is able to provide in-
ormation about refinement. This error indicator is inspired from
iller et al. (2006) where they use changes in effective saturation. Here,

he error indicator is based directly on changes in the solution that is to
ay the gradient of hydraulic head ℎ . This allows to work both for the
aturated and unsaturated regions. So, it reads: 

 𝐸 = 

1 
max 
𝐸∈ 𝔥 

( 1 |𝐸| ‖∇ ℎ ‖𝐿 2 ( 𝐸) ) 
1 |𝐸| ‖∇ ℎ ‖𝐿 2 ( 𝐸) . (32)

he error indicator is normalized so that 0 ≤ 𝐶 𝐸 ≤ 1 . 
Another a posteriori error indicator is introduced but it is based on

rror estimation. Indeed, Verfürth developed a posteriori estimation-
ased error indicators based on residual and derived thanks to suitable
orms in the context of finite elements methods for many equations
 Verfürth, 2013 ), in particular for nonlinear parabolic problems such as
ichards’ equation. For this kind of problem, Verfürth used some vari-
nts to prove reliability as well as global and local efficiency for implicit
unge–Kutta schemes with some restrictions ( Verfürth, 1998 ) and more
tandard time discretization in Verfürth (2003) ; Verfrth (2004) . Later
n, this type of residual-based derivation was adapted by Melenk and
ohlmuth to 𝔥 𝑝 -adaptive finite elements methods for elliptic problems

 Melenk and Wohlmuth, 2001 ). Afterwards, Houston et al. (2007) as
ell as Schötzau and Zhu (2009) ; Zhu and Schotzau (2010) devel-
ped residual-based a posteriori error estimation for 𝔥 𝑝 -adaptive inte-
ior penalty DG methods applied to elliptic problems and convection-
iffusion equations respectively. 

Greatly inspired by these works and supported by an heuristic anal-
sis, the following a posteriori estimation-based error indicator is used:

 𝜂𝑛 
𝐸 
) 2 = ( 𝜂𝑛 

𝐸, R ) 
2 + ( 𝜂𝑛 

𝐸, F ) 
2 + ( 𝜂𝑛 

𝐸, J ) 
2 , (33)

here 𝜂𝑛 
𝐸, R , 𝜂

𝑛 
𝐸, F and 𝜂𝑛 

𝐸, J are respectively the element residual, the face

esidual and the solution jump sub-estimates. 𝜚 I 
𝐹 

and 𝜚 D 
𝐹 

were defined
n Eq. (20) . The quantities 𝜆m ( 𝕂 ) and 𝜆M 

( 𝕂 ) stand respectively for the
owest and largest eigenvalue of 𝕂 on 𝐸. For a face 𝐹 of normal 𝒏 , the
inimum of normal component from neighbouring 𝕂 is chosen: 𝜅m ∶=
in ( 𝜅l , 𝜅r ) where 𝜅 = 𝒏 

⊺ ⋅ 𝕂 ( 𝑢 𝑛 +1 𝔥 ) ⋅ 𝒏 . So sub-estimates write: 

 𝜂𝑛 
𝐸, R ) 

2 = 

𝔥 2 
𝐸 

𝑝 2 
𝐸 
𝜆m ( 𝕂 ) 

‖ 𝜃( 𝑢 𝑛 +1 𝔥 ) − 𝜃( 𝑢 𝑛 𝔥 ) 

𝜏𝑛 
− ∇ ⋅ ( 𝕂 ( 𝑢 𝑛 +1 𝔥 )∇ 𝑢 𝑛 +1 𝔥 ) ‖2 

𝐿 2 ( 𝐸) , (34) 

 𝜂𝑛 
𝐸, F ) 

2 = 

∑
𝐹∈𝜕𝐸∩ I 𝔥 

𝔥 𝐹 
2 𝑝 𝐹 𝜅m 

‖� 𝕂 ( 𝑢 𝑛 +1 𝔥 )∇ 𝑢 𝑛 +1 𝔥 ⋅ 𝒏 � ‖2 
𝐿 2 ( 𝐹 ) 

+ 

∑
𝐹∈𝜕𝐸∩ N 𝔥 

𝔥 𝐹 
𝑝 𝐹 𝜅l 

‖𝑞 N − 𝕂 ( 𝑢 𝑛 +1 𝔥 )∇ 𝑢 𝑛 +1 𝔥 ⋅ 𝒏 ‖2 
𝐿 2 ( 𝐹 ) , (35) 

 𝜂𝑛 
𝐸, J ) 

2 = 

∑
𝐹∈𝜕𝐸∩ I 𝔥 

1 
2 
( 𝜚 I 

𝐹 
+ 

𝔥 𝐹 
𝑝 𝐹 𝜅m 

) ‖� 𝑢 𝑛 +1 𝔥 � ‖2 
𝐿 2 ( 𝐹 ) 

+ 

∑
𝐹∈𝜕𝐸∩ D 𝔥 

( 𝜚 D 
𝐹 
+ 

𝔥 𝐹 
𝑝 𝐹 𝜅l 

) ‖𝑢 D − 𝑢 𝑛 +1 𝔥 ‖2 
𝐿 2 ( 𝐹 ) . (36) 

ere, the time discretization is based on the implicit Euler scheme but
he a posteriori estimation-based error indicator can be determined for
7 
ther time schemes such as in Verfürth (1998) . Global estimates are
btained with: 

 𝜂𝑛 ) 2 = 

∑
𝐸∈ 𝑛 𝔥 

( 𝜂𝑛 
𝐸 
) 2 . (37)

Unlike the aforementioned papers, there is no rigorous mathematical
roof for this residual-based energy norm a posteriori error estimation.
xtension to the case of nonlinear and time-dependant parabolic equa-
ion solved by 𝔥 𝑝 -adaptive DG methods remains an open problem. How-
ver, some remarks can be drawn. Firstly, the numerical treatment of the
ime dependence and of the nonlinearity resorts to consider a sequence
f linear and steady problems. Secondly, as noted by Verfürth (2013) ,
he element residual term is related to the residual of the numerical so-
ution with respect to the strong form of the equation which may be
iewed as the error from the nonlinear process. The face residual term
s related to the boundary operator which is associated with the strong
nd weak forms of the differential equation. It reflects, on one hand,
hat the numerical solution gradient – the flux – is discontinuous and
n the other hand, that Neumann boundary conditions may not be sat-
sfied. The solution jump term is related to the penalization which are
ssociated with the weak form of the equation. It reflects that the nu-
erical solution is discontinuous at interior faces in the DG framework

nd Dirichlet boundary conditions may be slightly violated according to
he penalty coefficients. Moreover, the second term and third parts of
he estimation-based error indicators measure how valid the hypothesis
n the seek solution are to derive the DG formulation. 

.3. Weighted discontinuous Galerkin framework 

In the context of convection-diffusion equations or coupling of
arabolic/hyperbolic domains, the solution may hold spurious oscil-
ations at internal layers for vanishing or varying diffusion ( Ern and
roft, 2006 ). This situation is typical of porous media problems where
here are material heterogeneity and degenerate hydraulic properties.
ne interpretation is the flow stays continuous but the solution mimics
 discontinuity. Then, the numerical scheme is unable to recognize the
harp internal layer leading to numerical instabilities. 

Even though this phenomenon may be resolved by mesh refine-
ent, the corresponding computational cost is substantial to maintain
 physically acceptable solution. Slope limiters are another possibil-
ty to control these undershoots/overshoots but further computational
evelopments are needed to cope with the geometry of elements in
igh-dimension ( Sochala, 2008; Rivière, 2008 ). A satisfactory approach
ould be to design a DG method that can handle internal layers in an
utomated fashion. That is the reason why the weighted discontinuous
alerkin (WDG) framework was introduced ( Ern et al., 2008; Rivière,
008 ). These methods work thanks to two key ingredients which can be
een as a way to incorporate into the definition of the scheme some par-
ial knowledge of the solution. The first one is the use of weighted aver-
ges instead of the standard arithmetic average inside the discontinuous
ormulation. Then, the amount of diffusivity flux for each side of a face is
ontrolled. The second ingredient is to relax the face penalization used
or continuity constraint by a coefficient depending on the harmonic
ean of the diffusivity of the neighbouring elements. Such a penalty

trategy turns out to tune automatically the amount of local penalty to
egulate the degree of smoothness of the approximate solution. Analysis
nd details can be found in Ern et al. (2008) ; Rivière (2008) and related.

Internal layers depend on the spectral structure of the diffusivity. The
hoice is to take its normal component for face evaluation ( Ern et al.,
008; Burman and Zunino, 2006 ). Weights across a face are positive
umbers such that 𝜔 l + 𝜔 r ∶= 1 . The weighted average and the conju-
ate weighted average are respectively defined as: 

[ 𝑢 ]} 𝜔 ∶= 𝜔 l 𝑢 l + 𝜔 r 𝑢 r , {[ 𝑢 ]} 𝜔 ∶= 𝜔 r 𝑢 l + 𝜔 l 𝑢 r . (38)

hen, the relation ∀𝑢, 𝑣 ∈ 𝑆 𝑝 (  𝑛 𝔥 ) , � 𝑢𝑣 � = {[ 𝑢 ]} 𝜔 � 𝑣 � + � 𝑢 � {[ 𝑣 ]} 𝜔 is replacing

q. (3.1) in the weak formulation derivation. The weighted diffusion
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enalty coefficient is taken to be the harmonic mean of the neighbouring
ormal hydraulic conductivities across the face ( Ern et al., 2008 ): 

𝐹 = 

2 𝜅l 𝜅r 
𝜅l + 𝜅r 

. (39)

tandard DG methods assume 𝜔 l = 𝜔 r = 

1 
2 , which reduces the weighted

verage to the arithmetic average, and 𝛾𝐹 = 1 . The WDG method chooses
ther definitions. Following definitions in Ern et al. (2008) , let the
eights be: 
 

𝜔 l = 

𝜅r 
𝜅l + 𝜅r 

, 𝜔 r = 

𝜅l 
𝜅l + 𝜅r 

if 𝜅l + 𝜅r ≠ 0 , 
𝜔 l = 𝜔 r = 

1 
2 otherwise. 

(40) 

ith this definition choice for weights, 𝛾𝐹 results to be equivalent to the
eighted average of diffusivities: 

𝐹 = 

2 𝜅l 𝜅r 
𝜅l + 𝜅r 

= {[ 𝜅]} 𝜔 . (41)

WDG methods assume that diffusivity discontinuities fit the mesh
 Ern et al., 2008 ). This is generally the case for heterogeneous media
ut it is not true for nonlinear diffusivity such as in Richards’ equa-
ion. Then, sharp internal layers may occur inside an element so the
eighted framework is not expected to work in this situation. Never-

heless, a suitable adaptive mesh refinement can be used as a capturing
echnique. This idea is one of the main novelties proposed in this paper.
he weighted framework and mesh adaptation are working dynamically

n synergy: the former changes the smoothness nature of the numerical
olution while the latter tracks the internal layer linked to nonlinearity
hanks to refinement driven by the a posteriori estimation-based error
ndicator Eq. (33) . 

. Numerical results 

Simulations are performed to highlight some numerical behaviour
f Richards’ equation and the ability of the numerical methods to treat
hem. The IIPG method is employed in every simulation thereafter. 

.1. Polmann’s test-case 

This test-case considers a soil from New Mexico whose hydraulic
roperties are provided by Polmann et al. (1988) . A 1D vertical
ample of this soil subject to downward infiltration was simulated
y Celia et al. (1990) , Manzini and Ferraris (2004) as well as
ochala (2008) . This test-case can be challenging because, on one hand,
he prescribed pressure head on both sides of the 100 cm soil column has
 difference of 925 cm resulting in steep solicitation, and, on the other
and, hydraulic conductivity shows strong variations under the set of
alues taken by pressure head. The Polmann’s test-case employs Van
enuchten–Mualem relations with 𝐾 𝑠 = 9 . 22 × 10 −3 cm s −1 , 𝜃s = 0 . 368 ,
r = 0 . 102 , 𝛼 = 3 , 35 × 10 −2 cm 

−1 , 𝑛 = 2 , 𝑚 = 0 . 5 and 𝑙 = 0 . 5 . The com-
utational domain Ω is a rectangle ( 0 , 20 ) × ( 0 , 100 ) cm. The test-case is
olved for pressure head 𝜓 during s (48 h) with a constant time step
= 120 s and the initial condition is 𝜓 0 = −1000 cm. Throughout the

xamples, implicit Euler scheme, 𝑝 = 1 , 𝜎I = 𝜎B = 100 are used. Compu-
ation is done for two meshes: M100 is a coarse mesh of 100 elements
nd M1000 is a refined mesh of 1000 elements. 

For the mesh M100, nonlinear iterations have difficulties to reach
he requirements of stopping criteria and the solution holds spuri-
us oscillations, in particular an undershoot ahead of the sharp wet-
ing front as showed in Fig. 4 . This behaviour was already noticed by
elia et al. (1990) and Sochala (2008) . The latter decides to elimi-
ate this undershoot by adding a slope limiter which causes a small
ate compared to the non-limited solution. Better results are obtained
ith the mesh M1000, the oscillations in the solution vanish, see Fig. 5 .
he M1000-results agree with those from Celia et al. (1990) as well as
rom Manzini and Ferraris (2004) . This shows that a good discretiza-
ion is necessary for Richards’ equation to get quality solution. Such
8 
equirement can be fulfilled at optimal cost by a suitable adaptive lo-
al refinement. The error indicator from Eq. (32) is employed with re-
nement threshold values 𝛽c = 𝛽r = 50 . Adaptation is performed every 5
ime steps, starting with the M100 mesh. In Fig. 5 , results show that re-
nement is able to capture the wetting front dynamically and eliminate
he undershoot. The average number of elements is 211. More frequent
daptations allow to follow perfectly the front while less frequent adap-
ations are less costly. 

In addition, the WDG method from Section 4.3 is tried without any
daptation. The mesh M100 is used. Results in Fig. 5 show that the un-
ershoot is still present but reduced to one single element. It is relevant
o point out that the solution holds jumps where the wetting front is
teep. They prevent oscillations to propagate and make solution catch
he front steepness. The remaining undershoot depends on the wetting
ront localization in relation with the mesh geometry. This is due to the
onlinear nature of diffusivity and that is why it is important to associate
esh adaptation. 

.2. Tracy’s benchmark 

This test-case has an analytical solution given by Tracy (2006) for
D and 3D problems which can be used as a benchmark for Richards’
quation ( Tracy, 2007; 2010 ). Tracy’s benchmark is particularly rele-
ant because it is transient, has a simple parameter to vary nonlineari-
ies for Richards’ equation and holds differentiated steep regions. It can
erve to check the nonlinear solver robustness, convergence properties
nd adaptive mesh refinement. Then, it is very convenient to assess the
olution quality and compare codes: Solin and Kuraz (2011) and Dolej š í
t al. (2019) used it to evaluate the performance of their respective
ethod. 

Tracy’s benchmark employs Gardner–Irmay relations with 𝐾 𝑠 =
 . 1 m d −1 , 𝜃s = 0 . 5 , 𝜃r = 0 , 𝛼 = 0 . 1 m 

−1 and 𝑚 = 1 . It is solved for pressure
ead 𝜓 . The residual pressure head 𝜓 r is a parameter. The computational
omain Ω is a square ( 0 , 𝑎 ) × ( 0 , 𝑏 ) m. Here, 𝑎 = 𝑏 = 1 m and 𝜓 r = −10 m.
 specific Dirichlet boundary condition is prescribed on the top edge
ith the function: 

 top = 

1 
𝛼
log ( 𝑒 𝛼𝜓 r + ( 1 − 𝑒 𝛼𝜓 r ) sin ( 𝜋𝑥 

𝑎 
) ) . (42)

hile for other edges, a constant Dirichlet boundary condition is im-
osed: 𝜓 = 𝜓 r . The initial condition is 𝜓 0 = 𝜓 r . Tracy gives the 2D exact
olution 𝜓 ex in Tracy (2006) . Fig. 6 shows the solution obtained for a
xed grid with 𝜏 = 10 −4 day and 𝑇 = 10 −2 day. 

The treatment of initial condition is not straightforward. First, be-
ause the initial condition does not respect the top boundary condition:
hey are inconsistent. This issue can be troublesome for discretizations
ike finite elements methods ( Solin and Kuraz, 2011 ) but it is natural for
G methods where boundary conditions are usually enforced by weak
enalization ( Dolej š í et al., 2019 ). Second, because the top boundary
ondition condition is particularly stiff compared to the initial state.
herefore, the very first moments are the most interesting to simulate

n order to address the time-boundary inconsistency and the early stiff-
ess. Nonlinearities are controlled by the parameter 𝛼 in Eq. (42) . More
is large, more the relative hydraulic conductivity drops quickly to

ear zero, and so, nonlinearities are increased for Richards’ equation
 Tracy, 2007 ). Moreover, errors are linked to the top corners since the
op boundary condition induces a steep slope at these corners ( Tracy,
007; 2010 ). As Tracy stated, these features make this problem a good
ption to investigate adaptive mesh refinement. 

The classic 𝐿 

2 -norm and, following Rivière (2008) , Schötzau and
hu (2009) ; Zhu and Schotzau (2010) or Dolej š í et al. (2016) , the en-
rgy norm, also called the DG intrinsic norm, are introduced for a scalar
unction 𝑢 ∶ ℝ 

𝑑 ⟶ ℝ : 

𝑢 ‖2 
𝐿 2 ( 𝐸) ∶= ∫𝐸 𝑢 

2 d 𝐸 |||𝑢 |||2 ( 𝐸) ∶= ‖𝑢 ‖2 R( 𝐸) + 

∑
𝐹∈𝜕𝐸 

‖𝑢 ‖2 J( 𝐹 ) , (43)
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Fig. 4. Pressure head along the vertical for Polmann’s test-case with the mesh M100. 

Fig. 5. Comparison of pressure head at 𝑡 = 24 h for Polmann’s test-case: IIPG on mesh with 100 elements (M100), IIPG on mesh with 1000 elements (M1000), IIPG 

with adaptive mesh refinement (AMR), WDG with 100 elements (WDG). 
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Fig. 6. Hydraulic head for Tracy’s benchmark with 𝑝 = 1 and 6-step BDF. 

Fig. 7. Numerical convergence for Tracy’s benchmark. P1, P2, P3 and P4 stands respectively for linear, quadratic, cubic and quartic approximations. 
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here the residual seminorm and the jump seminorm are respectively: 

𝑢 ‖2 R( 𝐸) ∶= ∫𝐸 𝕂 ( 𝑢 )∇ 𝑢 ⋅ ∇ 𝑢 d 𝐹 (44) 

𝑢 ‖2 J( 𝐹 ) ∶= ∫𝐹 𝜚 𝐹 � 𝑢 � 
2 d 𝐹 . (45) 

Errors between numerical and exact solution are computed for a time
tep such that: 

𝑒 ‖𝑋 = ‖𝜓 ex − 𝜓‖𝑋 with 𝑋 = { 𝐿 

2 ,  , 𝑅, 𝐽} . (46)

To measure how effective the estimation-based error indicator is,
he effectivity indices for the estimation-based error indicator (33) , the
lement and face residuals (34) and (35) , and the solution jump (36) will
e used: 

 

eff  ∶= 

𝜂𝑛 
𝐸 |||𝑒 |||( 𝐸) 

, 𝐼 eff R ∶= 

( ( 𝜂𝑛 
𝐸, R ) 

2 + ( 𝜂𝑛 
𝐸, F ) 

2 ) 
1 
2 ‖𝑒 ‖𝑅 ( 𝐸) 
, 𝐼 eff J ∶= 

𝜂𝑛 
𝐸, J ‖𝑒 ‖𝐽 ( 𝐹 ) 

. 

(47) 

ue to the lack of rigorous derivation, the effectivity index is not ex-
ected to represent properly the true error. The estimator efficiency is
ather appreciated to set up a mesh refinement strategy. 

First of all, several simulations are performed to show convergence
roperties. Because of symmetry, one half vertical plan of the domain
s considered to speed up the simulation. Duration is set to 𝑇 = 10 −4 
ay to focus on small times. The computations are carried out with the
-step BDF and time steps are set to 𝜏 = 10 −6 s. This is needed to re-
uce time discretization errors expecting that they will be negligible
ompared to space discretization errors in order to observe space con-
ergence. Indeed, according to theoretical error estimates ( Dolej š í and
10 
eistauer, 2015 ), error in 𝐿 

2 -norm and 𝐻 

1 -seminorm behave such that: 

𝑒 ‖𝐿 2 ≈ 𝑐 𝔥 ℎ 
𝑝 + 𝑐 𝜏𝜏

𝑞 , (48) 

𝑒 ‖ ≈ 𝑐 ′𝔥 ℎ 
𝑝 +1 + 𝑐 ′

𝜏
𝜏𝑞 , (49) 

here 𝑐 𝔥 , 𝑐 
′
𝔥 , 𝑐 𝜏 and 𝑐 ′

𝜏
are constants independent of ℎ and 𝜏. Numerical

xperiments involve four meshes of 50, 200, 400 and 3200 quadrilateral
lements. Order approximation varies from one to four. Fig. 7 shows the
onvergence of the error 𝑒 𝔥 for the 𝐿 

2 - and energy norms with respect
o the number of degrees of freedom. It is interesting to note that space
rror are so small for the most dense mesh with 𝑝 = 4 that time error
aturates the convergence. 

In Fig. 8 , effectivity indices are plotted. The error measured with the
ump seminorm is independent from the exact solution and so is equiv-
lent to the jump indicator (36) . Then, the scaling factor of the jump
ndicator was chosen to be the penalty weight in order to be equal to
ump seminorm of the error. As a consequence, 𝐼 eff J controls only the nu-
erical representation of exact solution (interpolation error) and must

e equal to one as observed in Fig. 8 e. On the contrary, 𝐼 eff  and 𝐼 eff R are
ot representative of the true error in term of magnitude like observed
n Fig. 8 a and c. They are blowing up, at least for P1 and P2. It is proba-
ly due to a wrong choice for the scaling factors. The factors come from
rom Schötzau and Zhu (2009) ; Zhu and Schotzau (2010) who consid-
red another problem. They were kept because they scale properly the
ub-indicators to drive mesh adaptation as a capturing technique like
howed later on. Moreover, the scaling factors always overestimate the
rue error which is good for mesh refinement monitoring. True a pos-

eriori error analysis for the nonlinear problem of Richards’ equation is
nown to be difficult and remains completely open. 
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Fig. 8. Effectivity indices for different indicators (left) and convergence diagrams for the three parts of the indicator 𝜂𝑛 
𝐸 

(right). P1, P2, P3 and P4 stands respectively 
for linear, quadratic, cubic and quartic approximations. 
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The behaviour of the three contributions with respect to the num-
er degrees of freedom is shown in Fig. 8 by varying the order of ap-
roximation and the mesh size. Since they do not represent properly
he true error, observations are difficult to relate with the true error.
owever, some remarks can be drawn. Firstly, these diagrams show

he convergence up to a certain extent. Secondly, one can see that
he volume contribution – the residual indicator from Eq. (34) – be-
aves quite differently compared to the surface contributions – the flux
nd jump indicators from Eqs. (34) and (35) . The convergence is glob-
lly maximised with p -refinement for the surface contributions while
 -refinement seems to improve convergence better for the volume con-
ribution. This observation should be assessed in more details but could
rive the 𝔥 𝑝 -decision making. 

Error estimation is evaluated in terms of ability to drive the mesh
daptation. The error in 𝐿 

2 -norm is above the error measured with en-
11 
rgy norm as stated in Fig. 9 . It is worth to notice that the estimation-
ased error indicator 

Error estimation is evaluated in terms of ability to drive the mesh
daptation. The distribution of ‖𝑒 ‖𝐿 2 ( 𝐸) with no mesh adaptation is
iven in Fig. 9 for reference to localize the zones of interest. It is above
he error measured with energy norm. In Fig. 10 , it is worth to notice
hat the estimation-based error indicator 𝜂𝑛 

𝐸 
is able to give the shape

but not the magnitude) of the true error measured with the energy
orm, particularly for steady state, even though it was not expected
ecause there is no theoretical proof. Besides, during transient state,
he estimation-based error indicator spots the error in the top corner
here Tracy stated there were problems for this test-case, see Fig. 9 at

 = 10 −4 d. The gradient-based error indicator 𝐶 𝐸 was used successfully
n a previous paper ( Clément et al., 2020 ) to capture the moving wet-
ing front on a simple 1D infiltration case. Yet, as shown in Figs. 11 and
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Fig. 9. True error distribution in the 𝐿 2 -norm on Tracy’s benchmark. 
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2 , it performs badly for the Tracy’s benchmark where steep gradients
rise on a large part of the domain. The refinement thresholds are dif-
cult to tune which leads to over-refinement for large regions at the
op. They were set up to 𝛽c = 𝛽r = 0 . 5 in order to give ‖𝑒 ‖𝐿 2 (Ω) ≈ 0 . 167
t 𝑡 = 10 −2 d. Then, the computation is very costly since it takes around
27 min . For the estimation-based error indicator, the ability to drive
Fig. 10. Comparison between distributions of true error in en

12 
he mesh adaptation is more convincing. 𝛽c = 𝛽r = 0 . 85 in order to target
𝑒 ‖𝐿 2 (Ω) = 0 . 137 at 𝑡 = 10 −2 d. The mesh is adapted dynamically without
nducing over-refinement. Elements are refined where it is needed be-
ause adaptation occurs locally while the error is controlled. Then, the
ost is reasonable with a computation around 35 min . 

.3. Wetting of the La Verne dam 

.3.1. Setting 

The model is here used to simulate the full-scale wetting of a multi-
aterials dam: the La Verne dam. La Verne dam was constructed in 1991

o supply Gulf of Saint–Tropez (south of France) with drinkable water.
a Verne dam is 42 m high and peaks at 90 m above sea level. Its width
anges from −102 . 3 m to 110.5 m. The reservoir is on the left in Fig. 13 .
he genuine La Verne dam inner section shows a complicated heteroge-
eous material patterns, partially described in Fleureau and Fry (1991) ;
onelli et al. (1993) . The dam is an earth-filled embankment dam. A clay
ore allows for impermeability while outer zones are semi-permeable al-
uvial shells. The dam is protected by rip-rap upstream. Filters and drains
f very permeable gravel-like materials secure the dam inner saturation.
he dam foundation lies on an impervious rock stratum thanks to con-
ergy norm with the indicator 𝜂𝑛 
𝐸 

on Tracy’s benchmark. 
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Fig. 11. Comparison with 𝐿 2 -norm between 𝐶 𝐸 -based adaptation (left) and 𝜂𝑛 
𝐸 

-based adaptation on Tracy’s benchmark. 

Fig. 12. Comparison with energy norm between 𝐶 𝐸 -based adaptation (left) and 𝜂𝑛 
𝐸 

-based adaptation on Tracy’s benchmark. 

Fig. 13. Geometry, materials and boundary conditions of La Verne dam for the numerical case. S1, S2, S3 are numerical sensors corresponding to the experimental 
sensors while S4 and S5 are additional purely numerical sensors. 
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rete injections. A fine loam layer covers the downstream dam part. The
lling of La Verne dam was controlled with instruments ( Fleureau and
ry, 1991 ) during 40 days, which provides a unique and challenging
ataset to test the model. In particular, the reservoir height evolution
s available as well as three groundwater hydraulic head measurements
rom the core, see Figs. 13 and 15 . The three sensors are at 𝑧 = 55 m and
heir x-coordinates are −10 . 5 m, −3 m and 5 m. 

For the simulation, the reservoir height is used as a forced boundary
ondition in the form of a Dirichlet boundary condition monitored by
 function based on experimental data (see Fig. 14 ). Since comparison
ocusses on the core of the dam, it is assumed that outer high permeable
nd/or fine layers materials do not have a significant impact on inner
roundwater flows and saturation. The downstream thin loam layer, the
lter-isolated toe drain and the lower submerged rip-rap are therefore
ot represented by the simulation and assimilated to the adjacent mate-
13 
ials (see Table 4 for description of numerical dam structure). A Dirichlet
oundary condition for hydraulic head is prescribed at the downstream
oundary. The upper rip-rap and the cofferdam are simulated as such to
ssess the method robustness owing to their direct contact with the up-
tream dynamic boundary condition (forcing) and their hydraulic prop-
rties are steep. Rock/concrete foundations are supposed to be perfectly
mpervious which means a zero-valued Neumann boundary condition
an be prescribed. Finally, seepage boundary condition are prescribed
verywhere else because outflow can drain from the exposed upstream
nd downstream shell slopes. The actual simulated configuration of La
erne dam is sketched in Fig. 13 . Five different materials are simulated
 Table 4 ), with hydraulic properties provided by Bonelli et al. (1993) .
he dam wetting simulation involves each tool presented in this paper
or the adaptive strategy: the WDG method in combination with the
MR technique driven by the estimation-based error indicator. Mesh
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Fig. 14. Time evolution of hydraulic head ℎ, mesh and water table (white line) during La Verne dam wetting. 

Table 4 

Materials of the numerical La Verne dam. 

Materials Components Constitutive laws 𝜃s 𝜃r 𝕂 s (1, 1) ( 𝑚 ⋅ 𝑑 −1 ) 𝕂 s (2, 2) ( 𝑚 ⋅ 𝑑 −1 ) Specific parameters 

m1 Core Cofferdam Van Genuchten–Mualem 0.23 0 2 . 592 × 10 −3 8 . 64 × 10 −4 𝛼 = 0 . 08 𝑚 −1 , 𝑛 = 1 . 2 , 𝑙 = 0 . 5 
m2 Upstream shell Downstream shell Van Genuchten–Mualem 0.25 0 5.184 1.728 𝛼 = 0 . 01 𝑚 −1 , 𝑛 = 2 . 1 , 𝑙 = 0 . 5 
m3 Outer upstream shell Vachaud 0.22 0 5.184 1.728 𝐴 = 2 . 99 × 10 −4 m 5 , 𝐵 = 5 𝐶 = 6 . 34 × 10 −2 m 2 . 9 , 𝐷 = 2 . 9 
m4 Protection rip-rap Vachaud 0.27 0 17.28 8.64 𝐴 = 2 . 99 × 10 −4 m 5 , 𝐵 = 5 𝐶 = 6 . 34 × 10 −2 m 2 . 9 , 𝐷 = 2 . 9 
m5 Filters Drains Vachaud 0.32 0 17.28 8.64 𝐴 = 2 . 99 × 10 −4 m 5 , 𝐵 = 5 𝐶 = 6 . 34 × 10 −2 m 2 . 9 , 𝐷 = 2 . 9 
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daptation is done every five time steps. Fixed-point iteration is used to-
ether with adaptive time stepping. Order of approximation is quadratic
or space and one for time (implicit Euler) in order to have a robust and
ost-effective computation. Penalty parameters are 𝜎I = 𝜎B = 100 . 

The simulation of La Verne dam case is a very challenging bench-
ark for numerical models, combining heterogeneous materials, steep

onstitutive laws and dynamic boundary conditions. However, despite
f its interest, the La Verne dam benchmark remains only partly doc-
mented by in-situ instruments, precluding a comprehensive quantita-
ive confrontation between observations and model. In particular, the
ydraulic properties, which have a drastic effect on flow dynamics, re-
ain approximative due to the absence of direct in-situ characterization.

n addition, note that no initial in-situ values for water table elevation
nd saturation are available inside the dam, which can also strongly
ffect the subsequent evolution. For the present simulation, the initial
ater table is imposed at 67 m to fit the initial values of experimental
ydraulic head. Finally, Bonelli et al. pointed out that hydromechanical
 m  

14 
oupling should be considered to be fully consistent with the real case,
ee Fleureau and Fry (1991) . 

.3.2. Results 

Fig. 14 depicts hydraulic head (colour contours), water table (white
ine) and adaptive mesh for both simulations every 10 days. Time evo-
ution of simulated hydraulic head and water content are displayed in
ig. 15 at the position of the three experimental sensors (S1 to S3) and
or two additional relevant points called numerical sensors (S4 and S5).
t is recalled that initial reservoir free surface and water table eleva-
ion are at 57 and 67 m, respectively. Note that the water table is not
isplayed in Fig. 14 at some points due to insufficient resolution and os-
illations w.r.t the front sharpness, which are detailed in the Discussion
ection. The numerical model is observed to provide a good overall de-
cription of the dam wetting process. Fig. 14 shows that the propagation
f the wetting wave inside the dam is strongly dependent on the inner
aterials properties. The first eleven days are characterized by an ad-
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Fig. 15. Time evolution of inner dam hydraulic 
parameters. a) Hydraulic head at sensors S1 
(short-dashed lines), S2 (dash-dotted lines) and 
S3 (long-dashed lines) from the present simula- 
tion (red), the experimental data (light blue) and 
the previous results of Bonelli et al. (1993) . The 
reservoir height is depicted in dark solid line. b) 
Hydraulic head at numerical sensors S4 (orange) 
and S5 (yellow). c) Water content at S1 to S5 
sensors (note that S1, S2 and S3 show similar 
values). (For interpretation of the references to 
colour in this figure legend, the reader is referred 
to the web version of this article.) 

15 
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Fig. 16. Heterogeneity and nonlinear varying diffusivity highlighted respectively by water content and Péclet number for La Verne dam simulation with the reference 
simulation. 
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ustement phase during which the reservoir surface remains below the
nitial water table elevation. Hydraulic head and water content at nu-
erical sensors S4 and S5 show a very constrasting behaviour ( Fig. 15 b

nd c). This reveals that, even if both m2- and m3-materials show the
ame hydraulic conductivity at saturation, the difference in constitutive
aws induces a radically different dynamics of the capillary fringe. At S4,
he head remains nearly constant during the adjustement phase while
he water content is very low. The m3-material is here nearly desatu-
ated, well above a thin capillary fringe. By contrast, S5 is within the
arge capillary fringe associated to the m2-material, providing a much
igher water content. The hydraulic head shows first a small decay,
robably due to the drain proximity, before starting to rise in response
o the reservoir filling. Around day 14, both S4 and S5 sensors show a
imultaneous regular rising, slightly lagged from the reservoir level. A
trong jump is observed at S4 ( Fig. 15 c), indicating the crossing of a
harp capillary fringe. While rising, the water table remains nearly hor-
zontal in the upstream m2- and m3-materials zone but a sharp front
s observed to develop across the left inner drain (m5-material), see
ig. 14 . Small numerical oscillations in hydraulic head are observed in
ig. 15 but do not affect the global dynamics. Further downstream and
ower within the dam, the hydraulic head simulated at S1, S2 and S3
hows the slow wetting wave propagation, with attenuation and damp-
ng ( Fig. 15 b). At S1, S2, S3, the water content remains constant during
he whole simulation, in accordance to the sensors position below water
able. 

When compared to hydraulic head experimental data (see Fig. 15 a),
he overall time evolution and order of magnitude are well represented.
ome discrepancies are observed, in particular the late increase of head
hich is experimentally observed on each sensor around 30 days, which

ends to be underestimated by the model. However, recalling the lack of
xperimental control evoked before, more detailed comparison should
e made with caution. For the sake of comparison, the previous numer-
cal results presented by Bonelli et al. (1993) are recalled in Fig. 15 in
reen lines. While the overall time evolution is rather similar between
i  

16 
odels, a better agreement with experimental data is obtained with the
resent simulation. 

.4. Discussion 

The proposed modelling strategy for Richard’s equation showed very
atisfactory performance in reproducing analytical and laboratory test
ases and in simulating complex full-scale experiment. In this latter case,
he model is able to capture automatically wetting fronts which are mov-
ng dynamically thanks to AMR. In particular, the fronts associated with
eterogeneity are well resolved by the WDG technique. This is illustrated
y water content distribution in Fig. 16 a. Moreover, the simulation is
obust since it is able to compute completely without user intervention
nd handle many features: degeneracy for saturated/unsaturated zones,
ynamic forcing boundary condition and seepage. However, the sim-
lation struggles to capture wetting fronts associated with nonlinear
arying diffusivity resulting in severe overshoots/undershoots for the
ransition between saturated and unsaturated zones in very permeable
aterials. Further insight on this behaviour can be discussed using the
éclet number framework. Richards’ equation is an elliptic-parabolic
quation predominantly diffusive, it shares properties with convection-
iffusion equation and can behave like them. For example, sharp wetting
ronts and internal layers can be reinterpreted within this context. The
éclet number represents the ratio of the rate of advection to the rate
f diffusion. This dimensionless number is useful to analyse locally the
ature of the flow regime and determine whether advection or diffu-
ion is dominant. For this study, the Péclet number is extracted from
he saturation-based formulation of Richards’ equation which is similar
o a convection-diffusion equation with the water content 𝜃 as single
nknown. This formulation is undefined in saturated zones because hy-
raulic diffusivity 𝐷 tending to infinity but this zone is not of interest
or the Péclet number since Richards’ equation is purely diffusive. More-
ver, it is assumed that 𝜃 ≠ 0 . This assumption is not restrictive because
f water content drops to zero, nothing happens and, in practice, there
s often a residual water content. The total flux can be separated into a
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iffusive flux defined by hydraulic diffusivity and driven by capillarity,
nd an advective flux defined by hydraulic conductivity/water content
nd driven by gravity. The saturation-based formulation can be rewrit-
en as: 

 𝑡 𝜃 − ∇ ⋅ ( 𝐷( 𝜃)∇ 𝜃 + 

𝕂 ( 𝜃)∇ 𝑧 

𝜃
𝜃) = 0 , (50)

ith the hydraulic diffusivity 𝐷( 𝜃) = 𝕂 ( 𝜃) d 𝜓( 𝜃) d 𝜃 [L 2 ⋅T 

−1 ]. 
The Péclet number can therefore be defined as: 

e = 

𝕂 ( 𝜃) 𝐿 

𝐷( 𝜃) 𝜃
= 

𝐶( 𝜃) 𝐿 

𝜃
, (51)

ith the capillary capacity 𝐶 = 

d 𝜃( 𝜓) 
d 𝜓 [L −1 ] and 𝐿 the characteristic lin-

ar dimension assimilated to an element size 𝔥 𝐸 . High Péclet numbers
re clearly reached in the sharp-gradient areas in Fig. 16 b, with m1-,
2- and m3-materials (i.e. drains, rip-rap and upstream shell) showing

elatively high Péclet numbers, from 1 to more than 5. Consequently,
ater table is not straight anymore and a delay in elevation is observed
pstream, see Fig. 14 . 

In order to overcome these limitations, an additional ad-hoc con-
guration, named augmented simulation, has been implemented. This
ne does not use WDG framework and other difference lies in the mesh
nd tolerances for nonlinear convergence criterion. Finer discretization
s allowed in permeable material that is to say the m1-, m2- and m3-
aterials. The mesh is also refined around water table and both for the

radient-based and estimation-based error indicators. Instead of the ref-
rence simulation, 4-order BDF is employed and hydraulic properties are
elaxed with a numerical minimal value to avoid complete degeneracy.
he augmented computation allowed to eliminate spurious oscillations
rom the solution thanks to a more refined mesh, which explains why

DG method is not needed. As the mesh is extremely refined, the aug-

ented simulation takes approximately 13.5 times longer to compute
42 h 37 min ) than the reference simulation (3 h 11 min ). One core
ntel(R) Xeon(R) CPU 5-2630 v3 with 2 . 40 GHz was used. Additional
nformation and results can be found in Clément (2021) . 

The simulation of La Verne dam filling shows many difficult points
hich lead to two unwanted effects. The first one is the development
f non-physical oscillations around steep wetting fronts associated with
onlinear varying diffusivity which affect solution accuracy. The other
ne is nonlinear convergence possible only with very small time steps
o that the calculation duration is high. These challenges illustrate nu-
erical issues of Richards’ equation for heterogeneous media with high-

arying diffusivity. The improvements offered by the augmented simu-
ation support the idea that a series of heuristic tools (threshold val-
es, maximum refinement level, refinement frequency, adaptive time
teps) should be investigated to improve accuracy while maintaining
ost-effectiveness. 

. Conclusion 

In this work, a new strategy has been formulated for the solution
f Richards’ equation on the basis of discontinuous Galerkin method
nd adaptive mesh refinement. The approximation can reach high-order
oth in space and time. Issues outlined in the introduction have been
ackled and further discussed throughout the paper so the following con-
luding remarks can be drawn: 

• The seepage boundary condition is directly incorporated into the DG
weak formulation which makes its treatment natural and simple. 

• The adaptive time stepping allows the nonlinear iterative solver to
converge giving robustness. 

• Mesh adaptation is employed to monitor spatial errors of the
Richards’ equation by capturing the moving wetting fronts thanks
to an a posteriori error indicator. 

• The adaptive mesh refinement is based on a block structure to sur-
round large regions where wetting fronts move aiming to save com-
putational time by avoiding systematic refinement. It also prepares
a future parallelization. 
17 
• Oscillations in sharp wetting fronts of Richards’ equation have been
interpreted within the context of convection-diffusion equation.
Wetting fronts are considered as internal layers due to the non-
linear varying, and possibly vanishing, diffusivity as well as ma-
terial heterogeneity and anisotropy. A local Péclet number is ex-
hibited to highlight troublesome regions. A weighted discontinuous
Galerkin method is used to allow for jumps in the solution which bet-
ter approximate the sharp internal layers. Mesh adaptation and the
weighted framework work in synergy to capture and resolve sharp
wetting fronts through the proposed a posteriori error indicator. 

The strategy leads to mass conservative, efficient and robust solution
f Richards’ equation. However, the method holds heuristic parameters
o that questions remain open regarding the numerical analysis, the 𝔥 𝑝 -
ecision making, the nonlinear convergence or the error balance. All
hese aspects have great potential of improvements and will be investi-
ated in future studies to optimize the solving of Richards’ equation. 
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