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ABSTRACT
In this work, a parallel finite volume scheme on unstructured meshes is applied to fluid flow for mul-
tidimensional hyperbolic system of conservation laws. It is based on a block-based adaptive mesh
refinement strategy which allows quick meshing and easy parallelisation. As a continuation and as
an extension of a previous work, the useful numerical density of entropy production is used as mesh
refinement criterion combined with a local time-stepping method to preserve the computational
time. Then, we numerically investigate its efficiency through several test cases with a confrontation
with exact solution or experimental data.

1. Introduction

The numerical simulation of two-phase fluid flows in
complex three-dimensional (3D) configurations remains
a challenging task constrained by two conflicting goals:
the precise description of each involved physical pro-
cesses over the whole simulated domain down to the
smallest spatio-temporal scales of the fluid motion and
the computational cost. In reality, a compromise is gen-
erally made according to the requirements by the stud-
ied physical cases (for a more detailed presentation of
the numerical/physical strategic issues of such compro-
mise in the particular case of wave impact on rigid struc-
tures, the reader can refer, for instance, to Golay et al.
[2015]). Our research work focuses on a multidimen-
sional numerical scheme able to accurately solve nonlin-
ear hyperbolic systems of conservation laws while pre-
serving the computational time. This scheme has been
first presented by Ersoy, Golay, and Yushchenko (2013) in
the 1D case and further extended to three dimensions and
confronted to experimental data by Golay et al. (2015).

The present research work is dedicated to the study of
the numerical performance of the model through several
test cases. Themodel framework and the related scientific
issues having been detailed in recent above-mentioned
publications. We briefly recall here the overall principles
of the block-based adaptive mesh refinement (BB-AMR)
scheme, while the main numerical features of the model
are presented in the next section. The equations system

CONTACT Frédéric Golay frederic.golay@univ-tln.fr

of interest is
{

∂w(t )
∂t + ∇ · f (t, w) = G, (t, x) ∈ R

+ × R
d

w(0, x) = w0(x), x ∈ R
d,

(1)

where w, f , and G stands, respectively, for conservative
variables, flux, and source.

As a well-known result, the uniqueness of the (weak)
solution is lost even if the initial data are smooth. It can
be recovered by completing system (1) with an entropy
inequality of the following form:

S = ∂s(w)

∂t
+ ∇ · ψ(w) ≤ 0 , (2)

where (s, ψ) stands for a convex entropy–entropy flux
pair. Even if we are not able to prove the unique-
ness in the multidimensional case, this inequality allows
to select the physical relevant solution and provides a
‘smoothness’ indicator since the entropy satisfies a con-
servation equation only in regions where the solution
is smooth and an inequality when the solution devel-
ops discontinuities. Thus, the discrete quantity S can
always be considered as a measure of the amount of vio-
lation of the entropy equation (as pointed out in Berger
and Oliger, 1984; Houston et al., 1999; Karni, Kurganov,
and Petrova, 2002; Karni and Kurganov, 2005; Ersoy,
Golay, and Yushchenko, 2013). As already done in Ersoy,
Golay, and Yushchenko (2013), S, which is called the
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2 T. ALTAZIN ET AL.

numerical density of entropy production, can be used as a
smoothness indicator providing information on the need
to locally refine themesh (e.g. if the solution develops dis-
continuities) or to coarsen the mesh (e.g. if the solution is
smooth and well approximated).

Amajor issue ofmanymodelling challenges is to accu-
rately simulate processes over very large ranges in spa-
tial scale inexorably leading to heavy computational time.
Thus, in order to efficiently implement the local time-
stepping method in a parallel framework, the approach
taken here is to equip our adaptive mesh refinement
(AMR) technique with a block-based (BB-AMR) strat-
egy. Sufficient spatio-temporal resolution can be reached
in a reasonable CPU time, which is especially useful
for hyperbolic problems generally requiring fine CPU-
consuming uniform mesh. Roughly speaking, the BB-
AMR technique provides an efficient control of the shared
memory leading to well-balanced computational time
between cores by domain-like decomposition. Neverthe-
less, data locality is critical to obtain good performance
since the memory access times are not uniform and may
become expensive. Consequently, the re-meshing step
has to be carefully managed. Taking advantage of such
a block-based structure (as in domain decomposition),
we can define two different time steps: the first one is
based on the Courant–Friedrich–Levy (CFL) condition
(i.e computed through the finest cells), while the second
one is defined at the level of the block. The stability of the
scheme is thus respected for any time and the re-meshing
cost is minimised.

The first part of this paper (Section 2) is dedicated
to the summarised presentation of the multidimensional
finite volume solver on unstructured meshes with a BB-
AMR technique. The second and the main part of the
paper (Section 3) consists of an evaluation of the method
performance through a series of test cases. First, as
an addendum to Ersoy, Golay, and Yushchenko (2013),
our 1D solver is tested on the well-known Woodward
and Colella interacting blast-wave problem (Woodward,
1982; Woodward and Colella, 1984). Additional tests are
performed on classical 2D Riemann problem for poly-
tropic Euler equations which have been extensively stud-
ied (Zhang and Zheng, 1990; Schulz-Rinne, Collins, and
Glaz, 1993; Lax and Liu, 1998; Kurganov and Tadmor,
2002; Liska andWendroff, 2003). Solutions are composed
of 19 possible geometric configurations connected by
shocks, rarefactions, and contacts (see, for instance, Lax
and Liu, 1998). The so-called configuration 17 is used
here. It consists of a solution composed of a shock, a rar-
efaction wave, and two contact discontinuities. The final
set of numerical tests concerns the 2D and 3D simula-
tion of two-phase flows on a dam-break problem. For
those cases, ourmodel is based on a 3D compressible, low

Mach, two-phase flows model with a linearised ‘artificial
pressure’ law inwhich physical relevancy has already been
demonstrated in the context of highly dynamical and aer-
ated flows for breaking and impacting waves by Sambe
et al. (2011) or Golay et al. (2015).

2. Finite volume approximation for hyperbolic
conservation laws

This section summarises the main features of our
method, including the semi-discrete finite volume
numerical approximation of a general nonlinear hyper-
bolic equation (Equation (1)), the time integration, and
mesh refinement procedure. Note that w, f , and G are
the conservative variables, the flux, and the source term,
respectively, and d ∈ [[1, 3]].

2.1. Multidimensional finite volume approximation

The computational domain � ⊂ R
d is split into a set of

control volumes, also referred to as cells, � = �kCk of
mesh size |Ck|. For the sake of simplicity, the source term
is here omitted.

On a given cell Ck, noting wk(t ),

wk(t ) � 1
|Ck|

∫
Ck

w (t, x) dx,

the approximation of the mean value of the unknown
w(t, x) on Ck at time t, and integrating (1) over each cell,
we obtain

∫
Ck

∂w(t )
∂t

+
∑
a

∫
∂Ck/a

f (t, w) · nk/a = 0, (3)

where nk/a denotes the unit normal vector on the bound-
ary �Ck/a between cells k and a.

Next, F
(
wk(t ), wa(t ), nk/a

)
, the flux approximation,

being written as

F
(
wk(t ), wa(t ), nk/a

) ≈ 1
|∂Ck/a|

∫
∂Ck/a

f (t, w) · nk/ads ,

the semi-discrete finite volume approximation of Equa-
tion (1) (see, for instance, Godlewski and Raviart, 1996;
Toro, 2009; Eymard and Herbin, 2000) is obtained:

∂wk(t )
∂t

+ 1
|Ck|

∑
a

|∂Ck/a|F
(
wk(t ), wa(t ), nk/a

) = 0,

(4)
where F

(
wk(t ), wa(t ), nk/a

)
is defined via the Godunov

solver, i.e. it is computed with the exact solution of the
1D Riemann problem at the interface k/a with the states
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wk(t) andwa(t) (for further details, see, for instance, Toro,
2009; Golay and Helluy, 2007).

Equation (1) is completed with the entropy inequality
of Equation (2), where

(∇wψ(s(w)))t = (∇ws(w))t Dw f (w) .

Following Ersoy, Golay, and Yushchenko (2013), the
production of entropy (2) is approximated after each time
step using the same semi-discrete finite volume scheme
(4) and the same time integration scheme. The obtained
discrete quantity, called the numerical density of entropy
production, is then used as a mesh refinement criterion
(see Section 2.3).

For further details on the construction of the numer-
ical scheme, we refer to Ersoy, Golay, and Yushchenko
(2013), since the definition of the numerical fluxes reduce
to a 1D computational at each interface k/a. Up to now,
the first- and second-order Godunov schemes are imple-
mented.

2.2. Time integration

The time integration of Equations (4) and (2) can be
achieved in a classical way either by a Runge–Kutta or
Adams–Bashforth scheme. Note that, even if the Adams–
Bashforth scheme is known to be less stable and less accu-
rate, it can be easily handled in the framework of local
time stepping to save computational time (see e.g. Alt-
mann et al., 2009; Ersoy, Golay, and Yushchenko, 2013).

... Runge–Kutta schemes
By integrating Equation (4) and (2) during the time step
]tn, tn + 1[ of length δtn and by evaluating the numeri-
cal fluxes at time tn, the well-known first-order Euler’s
scheme is obtained:

wk(tn+1) = wk(tn)

− δtn
|Ck|

∑
a

|∂Ck/a|F
(
wk(tn), wa(tn), nk/a

)
. (5)

In order to increase the accuracy, a second-order
Runge–Kutta method can be used as follows:

wk(tn+1) = wk(tn)

− δtn
|Ck|

∑
a

|∂Ck/a|F
(
wk(tn+1/2), wa(tn+1/2), nk/a

)
,

where

wk(tn+1/2) = wk(tn)

− δtn
2|Ck|

∑
a

|∂Ck/a|F
(
wk(tn), wa(tn), nk/a

)
.

The numerical density of entropy production (2) is then
obtained with a second-order Runge–Kutta scheme.

... Adams–Bashforth schemes
The Adams–Bashforth method of order m consists in
replacing the numerical flux of Equation (4) by a polyno-
mial interpolation of the same order (Hairer, Nørsett, and
Wanner, 1993). For example, the second-order Adams–
Bashforth method reads

wk(tn+1) = wk(tn)

− δtn
|Ck|

∑
a

|∂Ck/a|F
(
wk(tn), wa(tn), nk/a

)

− δt2n
2δtn−1 |Ck|

( ∑
a

|∂Ck/a|F
(
wk(tn), wa(tn), nk/a

)

−
∑
a

|∂Ck/a|F
(
wk(tn−1), wa(tn−1), nk/a

) )
.

The Adams–Bashforth methods of order 2 and 3 are
stable for CFL condition less than one (Allahviranloo,
Ahmady, and Ahmady, 2007). Practically, for stability
purpose, we limit our applications to the second-order
scheme.

We also perform the same discretisation above for
entropy production (2).

2.3. Mesh refinement criterion and BB-AMR
technique

By contrast to the 1D case, defining a robust mesh refine-
ment parameter for 2D and 3D configurations is not
enough to design a suitable numerical solver. The treat-
ment of data is also a crucial point and in particular the
way to share the memory in a parallel process. This point
is handled in a hierarchical block-based way that we have
called BB-AMR. First, we present the main strategy to
adapt the mesh with respect to the numerical density of
entropy production and then how to manage data in an
efficient way.

... Numerical entropy production asmesh
refinement criterion
The efficiency of the numerical density of entropy pro-
duction as a relevant mesh refinement parameter have
been already demonstrated in a previous work (Ersoy,
Golay, and Yushchenko, 2013; Golay et al., 2015). It has
been numerically observed (and from theoretical consid-
erations) that the production of the numerical density
of entropy is almost zero for smooth solution and non-
positive when the solution develops discontinuities. As a
consequence, the mesh is automatically and proportion-
ally (with respect to the production) refined inside an area
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4 T. ALTAZIN ET AL.

where the production is non-zero. More precisely, Ersoy,
Golay, and Yushchenko (2013) have demonstrated that,
for the 1D gas dynamics equation, the support of the rel-
ative error coincides with the support of the numerical
density of entropy production. The extension towards the
multidimensional case is detailed in the case of two-fluid
flows in Golay et al. (2015).

According to the finite volume approximation defined
in Section 2, a local numerical entropy production Snk is
computed on each cell at time tn and compared to the
average entropy production S̄ = 1

|�|
∑

k S
n
k . Two coeffi-

cients 0� αmin � αmax � 1 are thus defined to determine
the ratio of numerical production of entropy leading to
mesh refinement or mesh coarsening.

For each cell Ck,

� if Snk > S̄αmax, the mesh is refined and split; and
� if Snk < S̄αmin, the mesh is coarsened whenever it is
possible following the rule defined hereinafter.

The threshold parameters αmax and αmin are empiri-
cally determined, according to the simulated case require-
ments, to reach a relevant compromise between compu-
tational cost and accuracy. Thus αmin and αmax allow to
set a percentage ofmesh refinement andmesh coarsening
with respect to the quantity S̄. For instance, the smaller
the αmin and αmax are, the more accurate the results are
at the expense of CPU time.

... Mesh refinement process
For the 1D case, the local mesh refinement procedure is
constructed following dyadic tree applied at each time
step. ‘Macro cells’ are used to be easily refined by gener-
ating hierarchical grids. Each cell can be split into two.
Dyadic cells graph are thus produced, in basis 2 num-
bering, to allow a quick computing scan to determine the
adjacent cells. For stability reasons, the mesh refinement
level cannot exceed 2 between two adjacent cells. More
details can be found in Ersoy, Golay, and Yushchenko
(2013).

The 3D extension of the mesh refinement procedure
is a challenging task. The present section aims to present
the parallelisation implementation to demonstrate the
interest of local time-stepping and BB-AMR schemes in
terms of CPU time but not to study the performance of
the parallelisation procedure for itself. Many interesting
works on AMR techniques have been presented for 2D
Cartesian grid for quadtree (Berger andColella, 1989; Yiu
et al., 1996; Min and Gibou, 2007; Zhang and Wu, 2011),
octree for 3D simulations (Losasso, Gibou, and Fedkiw,
2004; Fuster et al., 2009), and anisotropic AMR (Coupez
and Hachem, 2013; Hachem et al., 2013). The extension

from 1D to 3D leads to natural octree meshing. But, the
presence of a complex moving interface (composed of
rarefaction, shocks and/or contacts) implies to re-mesh at
each time step, which is obviously a costly process, even
if some AMR tools like Octor or Gerris (Tu, O’Hallaron,
and Ghattas, 2005; Fuster et al., 2009) are very powerful
and well parallelised. Guided by the need to reach a
relevant compromise between the contradictory aims
of solution accuracy and computing speed, a Cartesian
block-based mesh approach is introduced, somewhat
like in Williamschen and Groth (2013) and Zheng and
Groth (2012). The computational domain is divided
into several blocks, each corresponding to the initial
unstructured mesh composed of hexahedral cells. These
blocks are, in their turn, split in a Cartesian way (2L − 1nx,
2L − 1ny, 2L − 1nz), where (nx, ny, nz) stands for the initial
block discretisation, and L the level of mesh refinement.
For each refined cells (or blocks), averaged values are
projected on each sub-cell and fluxes are computed as
simply as possible to avoid heavy computation. Then, in
order to balance the CPU load, the cells of each block
are re-distributed in a fixed number of domains (part
of the total computational domain) according to the
Cuthill–McKee numbering (see Figure 1). The number
of domains being fixed, each domain is loaded in a given
MPI process and all MPI processes are then distributed
on a fixed number of cores (not necessarily the same).
The re-numbering and re-meshing being expensive, the
mesh is finally kept constant on a time interval, called
AMR time step, given by the smallest block (rather by the
smallest cell) and the maximum velocity. More details on
the 3D BB-AMR are given in Golay et al. (2015).

3. Numerical results

This section is dedicated to the numerical validation of
the BB-AMR scheme through several multidimensional
test cases.

3.1. Euler equations of gas dynamics

Let us consider a compressible perfect gas confined in a
domain�. The governing equations for themotion of the
compressible gas in [0, T] × � are the so-called Euler
equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂ρu
∂t

+ ∇ · (
ρu ⊗ u + pId

) = 0,

∂ρE
∂t

+ ∇ · ((
ρE + p

)
u
) = 0,

(6)
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Figure . Example of three-dimensional block-based mesh with  domains and  blocks (Golay et al., ): (a) block-based mesh; (b)
domain decomposition.

where ρ is the density, p = (γ − 1)ρε is the pressure, u
the velocity, and E the total energy defined by

E = ε + ‖u‖2
2

.

Here ε stands for the internal specific energy and γ (set
to 1.4) is the ratio between specific heats.

System (6) is written as a system of conservation laws
as in Equation (1) completed with the entropy inequality
(2) where the convex entropy s(w) = s (ρ, ρu, ρE) and
the entropy flux ψ(w) are classically given by the follow-
ing relations:

s(w) = −ρ ln
(

p
ργ

)
, ψ(w) = u s(w) . (7)

Let us note that even if system (6) is strictly hyperbolic on
the set {ρ > 0}, the previous quantities defined in Equa-
tion (7) make sense for ρ � 0.

... One-dimensional Riemann problem
The first test case is based on the Woodward–Colella
blast-wave benchmark case. This 1D test problem, which
was initially introduced in Woodward (1982), is one of
the most challenging test cases to solve on a uniform grid
even with a very large number of cells. In particular, it
illustrates the strong relationship between the accuracy of
the overall flow solution and the thinness of discontinu-
ities on the grid involvingmultiple interactions of discon-
tinuities (shocks and contact discontinuities) and rarefac-
tions.

The initial condition consists of three constant states:

x ∈ [−1, 1], ρ(0, x) = 1, u(0, x) = 0,

p(0, x) =
⎧⎨
⎩
1000, x � 0.1,
0.01, 0.1 < x � 0.9,
100, x > 0.9

on a computational domain [0, 1] with prescribed reflect-
ing boundary conditions.

A full set of comparisons with different approxima-
tions is proposed here, using the following settings and
notations:

� Both the first- and second-order schemes are
compared. Thus, we will refer to AB1, AB2,
and RK2 as the first- and second-order Adams–
Basforth schemes and the second-order Runge–
Kutta scheme, respectively. Both AB2 and RK2 use
a MUSCL reconstruction (Golay and Helluy, 2007).
Computations are performed on a dynamic grid
with a uniform time step, except

– if the case acronym ends with ‘U‘, which refers to a
uniform fixed grid or,

– if the acronym ends with ‘M’, which refers to the
local time-stepping algorithm (see Ersoy, Golay,
and Yushchenko [2013] for further details on the
local time stepping adaptation).

The CPU time is noted as follows:
– cpug for the uniform (or global) time stepping,
– cpul for the local time stepping.
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Figure . Comparison between AB (green lines), ABU (red lines), and reference (black lines) cases for the density (a), the pressure (b),
the momentum (c), and the internal energy (d) at time t = . s with Lmax = . Numerical density of entropy production (in absolute
value) is also plotted in (a): (a) density and numerical density of entropy production; (b) pressure; (c) momentum; (d) internal energy.

� A reference solution (black line in Figure 2) is com-
puted on a uniform grid with 20, 000 cells using the
RK2U scheme.

� For all numerical tests in this section, the following
parameters are used:

CFL : 0.25
Simulation time (s) : 0.038
Initial number of cells : 200
Maximum level of mesh refinement : Lmax
Mesh refinement parameter αmax : 0.01
Mesh coarsening parameter αmin : 0.001
Mesh refinement parameter S̄ : 1

|�|
∑

kb S
n
kb

� Adaptive numerical solutions are compared to those
computed onuniformfixed grid. For a relevant com-
parison, the solution on the fixed grid will be com-
puted with NLmax cells. NLmax stands for the average

number of cells used during a simulation of an adap-
tive schemewith amaximum level Lmax which is the
maximum level of refinement.

� Each presented result displays a positive density.
Thus, for the sake of visual commodity, the numeri-
cal density of entropy production will be depicted in
absolute value on the density plots.

� To study the numerical convergence of AB1, AB1U,
AB1M, RK2U, AB2U, AB2M, and RK2 cases, the
discrete l1x -norm is used for density, momentum,
pressure, and internal energy error (which is repre-
sentative of the scheme efficiency, in particular for
low-density flows).

� Tables of schemes performance are displayed in
Tables 1 and 2. These tables are useful to compare
the computational times and, in particular, to assess
the expression ‘saving the computational time keep-
ing the same order of accuracy’. Since the errors of

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 D

e 
T

ou
lo

n 
et

 D
u 

V
ar

],
 [

Fr
éd

ér
ic

 G
ol

ay
] 

at
 0

0:
26

 0
8 

Ju
ne

 2
01

6 



INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 7

Table . Convergence tests for the first-order AB scheme, l1x -norm at final time with respect to the
averaged number of cells NLmax of ρ, u, p, and ε, cpug for global time stepping and cpul local time
stepping,NTf being the number of cells at the final time.

Lmax ‖ρ − ρex‖l1x ‖p− pex‖l1x ‖u − uex‖l1x ‖ε − εex‖l1x NTf
cpug cpul

 .E+ .E+ .E+ .E+  . .
 .E+ .E+ .E+ .E+  . .
 .E+ .E+ .E+ .E+  . .
 .E+ .E+ .E+ .E+  . .
 .E+ .E+ .E+ .E+  . .

the AB1 and AB1M (respectively, AB2 and AB2M)
schemes are similar, only the former is presented in
Table 1 (respectively, Table 2).

Figure 2 depicts the solution profiles for density
(Figure 2(a), together with numerical density of entropy
production Snk), pressure (Figure 2(b)), momentum
(Figure 2(c)), and internal energy (Figure 2(d)) for the
AB1U, AB1, and reference cases computed with Lmax =
5 and 709 cells (in average for the AB1 case). Figure 2(a)
first demonstrates the relevancy of the entropy produc-
tion as refinement criterion: the stronger the density gra-
dient, the larger the density of entropy production is. Each
of the plotted profiles then shows the solution improve-
ment provided by the use of adaptive mesh.

Figure 3 plots, for both the first-order (left) and
second-order (right) schemes, a mesh convergence study
based on the evolution of ‖ε − εex‖l1x discretisation error.
As already noticed in Ersoy, Golay, and Yushchenko
(2013), the rate of convergence is considerably increased
by the adaptive scheme and, in our experiences, it can be
improved by changing the threshold parameters αmin and
αmaax at the expense of the CPU time. Finally, one notes
the clear improvement of mesh convergence for both the
first- and second-order schemes. In addition, we provide
the numerical error for the density, pressure, velocity, and
energy for both the first- and second-order schemes in
Tables 1, 2 and 3.

It is here demonstrated that the adaptive grid strategy
using the numerical density of entropy production can

Table . Convergence tests for the first- and second-order
schemes.

Rate ‖ρ − ρex‖l1x ‖p− pex‖l1x ‖u − uex‖l1x ‖ε − εex‖l1x
ABU . . . .
AB . . . .
ABM . . . .
RKU . . . .
ABU . . . .
RK . . . .
AB . . . .
ABM . . . .

considerably increase the accuracy without imposing a
large number of cells and related extra CPU time required
in solving the problem on a uniform grid.

... Two-dimensional Riemann problem
Our tests are now extended to the 2D Riemann problem
on the unit square with the following initial data:

(ρ, u, v, p)(0, x, y)

=

⎧⎪⎪⎨
⎪⎪⎩

(1, 0, −0.4, 1) if x > 0.5 and y > 0.5,
(2, 0, −0.3, 1) if x < 0.5 and y > 0.5,
(1.0625, 0, 0.2145, 0.4) if x < 0.5 and y < 0.5,
(0.5197, 0, −1.1259, 0.4) if x > 0.5 and y < 0.5.

In this configuration, the solution consists of two contacts
(north and south), a shock (west), and a rarefaction (east)
as displayed in Figure 4. A reference solution is computed
on a uniform grid with 1, 000, 000 cells using the RK2U
scheme. Figure 5 presents the reference solution at time

Table . Convergence tests for the second-order AB scheme, l1x -norm at final time with respect to
the averaged number of cellsNLmax of ρ, u, p, and ε, cpug for global time stepping and cpul local time
stepping,NTf being the number of cells at the final time.

Lmax ‖ρ − ρex‖l1x ‖p− pex‖l1x ‖u − uex‖l1x ‖ε − εex‖l1x NTf
cpug cpul

 .E+ .E+ .E+ .E+  . .
 .E+ .E+ .E+ .E+  . .
 .E+ .E+ .E+ .E+  . .
 .E+ .E+ .E+ .E+  . .
 .E+ .E+ .E+ .E+  . .
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8 T. ALTAZIN ET AL.
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 AB1U : order = 0.46779
 AB1 : order = 0.8015
 AB1M : order = 0.80671

(a)
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L^1 discretisation error

 RK2U : order = 0.5313
 AB2U : order = 0.51497
 RK2 : order = 0.98444
 AB2 : order = 0.94764
 AB2M : order = 0.90698

(b)

Figure . ‖ε − εex‖l1x with respect to the average number of cells at time t= .: (a) first-order and (b) second-order schemes.

Figure . Reference solution for the D Riemann problem at time
t = .: pressure (colour), density (contours; .–. step .),
velocity field (arrows).

t = 0.3 with pressure (from 0.53 to 1.98 by 0.05 steps)
and velocity field in Figure 4, density in Figure 5(a), and
numerical density of entropy production in Figure 5(b).
One notes that the shock and the contacts are associated
with strong production of numerical density of entropy,
which again demonstrates the relevancy of such numer-
ical quantity to describe the most tricky regions of the
computational domain.

For the following numerical experiments, we have
used the following parameters:

CFL : 0.5
Simulation time (s) : 0.3
Initial number of blocks : 30 × 30
nx = ny : 1
Number of domain : 1
Maximum level of mesh refinement : Lmax
Mesh refinement parameter αmax : 0.08
Mesh coarsening parameter αmin : 0.05
Mesh refinement parameter S̄ : 1

|�|
∑

kb S
n
kb

Convergence study is performed here with the first-
order scheme only for AB1, AB1U, and AB1M with
the discrete l1x -norm for density and pressure. Computa-
tional time is provided keeping in mind that model per-
formance can be easily enhanced by the use of multi-
domains as proposed in the next numerical experiment.
The error between considered and reference solutions is
performed by projecting the former on the fine grid of
reference solution.

For the AB1 and AB1M schemes, four tests have been
carried out by varying the level of mesh refinement from
1 to 4. As quoted before, the errors between the two
schemes being similar, we only plot the pointwise pres-
sure error between reference and AB1 case (see Figure 6).
Figure 7 shows pressure contours and mesh refinement.
As expected, increasing the level of mesh refinement
based on the numerical density of entropy production
leads to a better description of the most difficult part
of the problem: shock, rarefaction, and contact regions,
for instance. In comparison with other results (see, for

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 D

e 
T

ou
lo

n 
et

 D
u 

V
ar

],
 [

Fr
éd

ér
ic

 G
ol

ay
] 

at
 0

0:
26

 0
8 

Ju
ne

 2
01

6 



INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 9

Figure . Reference solution for the D Riemannproblemat time t= . and numerical density of entropy production: (a) density (colour);
(b) numerical density of entropy production.

instance, Liska and Wendroff, 2003) the contact is pre-
cisely characterised, without any spurious vorticity and
one observes the ripple formed in the NW quadrant.

Figure 8(a) and 8(b) compares the errors with the
discrete l1x -norm for density and pressure for the AB1,
AB1M, and AB1U schemes. As expected in the presence
of contact discontinuity, the order of convergence is of
order 1/2 for all schemes.

3.2. Compressible lowMach two-phase flows
equations and interface sharpening

Let us consider now a compressible two-fluid flows prob-
lemwhere viscosity, surface tension, and heat conduction
are neglected. The incompressibility condition is relaxed
using a low Mach approach in order to lead to an hyper-
bolic system of conservation laws. Thus, based on Golay
and Helluy (2007), the following 3D isothermal hyper-
bolic and compressible Euler equation system is applied
to a mixture fluid of air and water:

⎧⎪⎨
⎪⎩

∂ρ

∂t
+ ∇ · (ρu) = 0

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u) + ∇p = ρg,

(8)

where the unknowns are the density ρ, the three compo-
nents of the velocity u = (u, v, w), and the pressure p.
Here, g stands for gravitational acceleration.

Air and water fractions within the mixture are defined
by the volume fraction function ϕ � [0, 1] (ϕ = 0 in the

water, and ϕ = 1 in the air). With this definition of ϕ, the
pressure of the two-phase flow problem is a function of
the density ρ and the volume fraction ϕ, where ϕ solves
the following non-conservative transport equation:

∂ϕ

∂t
+ u · ∇ϕ = 0. (9)

It is usually admitted that a flow is incompressible if
the Mach number M = ‖u‖ /c is lower than 0.1 (c is the
sound speed), keeping in mind that the real (physical)
Mach number is generally much smaller (of the order
of 1/400 ∼ 1/1600). In particular, this is constraining
for explicit finite volume solver in which the time step
�t needs to satisfy a CFL condition. Note also that the
numerical scheme efficiency is expected to decrease with
the Mach number. Therefore, an artificial pressure law
(isothermal equation of state) is used to close the system:

p = c20(ρ − (ϕρA + (1 − ϕ)ρW )) + p0. (10)

In this expression, ρA and ρW stand for air andwater den-
sities, respectively, c0 is the artificial sound speed (defined
below), and p0 a reference pressure. For further details
about the EOS choice, the reader is referred to Golay and
Helluy (2007). The value of c0 is chosen as a compro-
mise between the limits of compressible effects, the rate
of numerical diffusion and a reasonable CFL constraint.
In the present context, i.e. for flow velocity of the order
of 1 m/s, an ‘optimised’ value c0 = 20 m/s is used. It is
emphasised that in the boundary mixture region 0< ϕ <
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10 T. ALTAZIN ET AL.

Figure . Pointwise pressure error between the approximate solution and the reference one at time t= .: (a) Lmax = . (b) Lmax = . (c)
Lmax = . (d) Lmax = .

1 related to numerical diffusion processes, the proposed
pressure law has no physical meanings.

In the present case, for the two-fluidmodel, the expres-
sion of entropy and entropy flux in (2) are

s = 1
2
ρu2 + c20ρ ln ρ − c20(ρW − ρA)ϕ,

ψ =
(
1
2
ρu2 + c20ρ(ln ρ + 1)

)
u .

In the region, 0< ϕ < 1 where both phases coexist, the
numerical diffusion is expected to deteriorate the descrip-
tion of the air–water interface. Following Kokh (2001)
and Shyue (2014), an interface sharpening method is
applied using a source term Sc = φ2(1− φ)2(φ − c) in the
transport equation (9). The constant c is defined as amass
conservation parameter (Kačeniauskas, 2008) leading to
��Sc � 0. For each time step, a fractional step method is
used to solve Equation (8). The non-homogeneous sys-
tem is then solved with the interface sharpening source
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INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 11

Figure . Pressure and the mesh at time t= .: (a) Lmax = . (b) Lmax = . (c) Lmax = . (d) Lmax = .

terms (with a 1-iteration explicit scheme):

∂ϕ

∂τ
= Sc

∂ρ

∂τ
= Sc (ρA − ρW ) ,

∂ρu
∂τ

= Scu (ρA − ρW ) , (11)

where τ is a fictive time.

... A D dam-break problem
The numerical model is confronted with the classical
experiment of Martin and Moyce (1952). As shown in
Figure 9, a column of water (a× 2a) collapses in a box (4a
× 3a). The initial mesh is composed of 594 blocks (27 ×
22× 1)which are initially split intonx ×ny ×nz cells with
nx = ny = 2 and nz = 1. The mesh is refined around the
air–water interface with a level 3 (i.e. 512 cells per block)
with a total initial number of cells around 10,500 cells
(since the level between blocks cannot exceed 2). Blocks
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12 T. ALTAZIN ET AL.
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(a)
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(b)

Figure . Error analysis for the density and the pressure: number of cells vs. l1x-error in log scale: (a) density; (b) pressure.

Figure . Collapse of water column (Koshizuka, Tamako, and Oka,
; Martin and Moyce, ).

are then distributed on 10 domains which evolve dur-
ing each re-meshing time step (see Figure 10). Symmetry
boundary conditions are imposed. The simulation time is
T = 0.4s and the AMR time step is fixed to 0.01s, i.e. the
re-meshing occurs 40 times during the simulation with
the mesh refinement and coarsening parameters, respec-
tively, set to αmax = 0.2 and αmin = 0.02. During the
global simulation, the number of cells evolves from 7500
to 17, 500 cells as shown in Figure 11.Note that, even if the
computation has been initially started with a very large

number of cells, themesh would have been quickly coars-
ened and automatically adapted to the production of the
numerical density of entropy as displayed in Figures 12
and 13.

Figure 14 shows the rapid collapse of the water column
and the impact on the right wall after t= 0.3 s. The inter-
face sharpening method together with the dynamic mesh
refinement shown in Figure 12, thanks to the entropy pro-
duction (Figure 13), allows an accurate description of the
interface. A very good quantitative agreement in obtained
with the experimental data of Martin and Moyce (1952),
as shown in Figure 15 in non-dimensional data, where
the length of water l denotes the position of the air–water
interface at the bottom of the box.

... A D dam-break problem
A 3D dam-break problem is here used as a benchmark
test to evaluate the method speed-up potential in three
dimensions.

We consider a water column
( 1
2 × 1

2 × 1
2

)
collapsing in

a unit cube. The initial mesh is composed of 3375 blocks
(15 × 15 × 15) which are initially split into nx × ny × nz
cells with nx = ny = nz = 1. As done in previous test case,
the blocks around the air–water interface are of level 3.

Figure . Block distribution in  domains at time ., ., ., and . s.
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INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 13

Figure . Number of cells during the computation.

Figure . Mesh at time ., ., ., and . s.

Figure . Numerical production of entropy at time ., ., ., and . s (blue, zero; red, negative values).

Figure . Density at time ., ., ., and . s (blue, air; red,
water).

The simulation time is T = 2.5 and the AMR time step is
fixed to 0.025, i.e. the re-meshing occurs 100 times during
the simulation with the mesh refinement and coarsening
parameters, respectively, set to αmax = 0.2 and αmin =
0.02. During the global simulation, the number of cells
evolves from 172, 215 to 587, 763. Snapshots of the simu-
lation are shown in Figure 16. The 3Ddam-break collapse
is well simulated, as well as the multiple reflection against
the walls.

Figure . Length of water during the collapsing. Confrontation
between the computation and the experiment of Martin and
Moyce ().

For the sake of comparison, each simulation has been
computed on the same small cluster (2 nodes, 40 cores).
In order to show the efficiency of the parallel implemen-
tation, the RK2 and AB2 CPU times are compared dur-
ing the first AMR time step. The normalised CPU time,

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 D

e 
T

ou
lo

n 
et

 D
u 

V
ar

],
 [

Fr
éd

ér
ic

 G
ol

ay
] 

at
 0

0:
26

 0
8 

Ju
ne

 2
01

6 



14 T. ALTAZIN ET AL.

Figure . Collapse of D water column at time t= ., ., .s

Figure . Normalised CPU time and speed-up versus number of domainswith Runge–Kutta or Adams–Bashforth scheme: (a) normalised
CPU time; (b) speed-up.

shown in Figure 17, stands for the inverse of the so-called
speed-up. The computational domain is split into 1, 2, 4,
8, 16, and 32 domains.

As expected, the Adams–Bashforth scheme with local
time stepping allows a great improvement of the CPU
time (about a factor of 2.5 faster), because we spare
the computation of an intermediate time step and some
computations of fluxes on coarsed cells. The efficiency,

i.e. speed-up
number of processors , of the computation is roughly

85% for 8 domains and 60% for 32 domains. From a
numerical point of view, the presented method is robust
although the efficiency of the parallel process reaches a
steady state after 20 processors, indicating that the paral-
lel procedure has to be optimised.

4. Conclusion

This paper reports on the extension of the 1D schemepre-
sented by Ersoy, Golay, and Yushchenko (2013) to a gen-
eral multidimensional framework. A finite volume solver
is used to solve the nonlinear hyperbolic equation sys-
tem on unstructured meshes. An AMR is introduced to
improve both solution accuracy and CPU performance.

It is based on a useful numerical criterion: the numer-
ical density of entropy production. From a computa-
tional viewpoint, tomake the local time-steppingmethod
more efficient in a parallel context, a new BB-AMR is
applied.

A series of 1D, 2D, and 3D test cases have been per-
formed to test and validate our approach, using sev-
eral model configurations (uniform or adaptive grids,
Adams–Bashforth orRunge–Kutta schemes, etc.). 1D and
2D Riemann problems demonstrated that the adaptive
grid strategy using the numerical density of entropy pro-
duction helps to greatly improve the accuracy and reduce
the computational effort. Dam-break benchmarks have
also been carried out, both in 2D and 3D, to test our
method when applied to compressible low Mach two-
phase flows problems. Interface sharpening techniques
are used here to improve the description of the com-
plex wavy motion of the free surface during the col-
lapse of water columns and impacts on rigid walls. Very
good agreement is obtained with the existing experimen-
tal results. Comparison between Adams–Bashforth and
Runge–Kutta shows the significant computation speed-
up provided by the former scheme.
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Further on-going developments concern, in particu-
lar, the optimisation of the proposed numerical scheme in
order to increase the efficiency (i.e. the ratio of the speed-
up over the number of process) as pointed out in the last
3D test case.
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