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Abstract: We propose a 1D adaptive numerical scheme for hyperbolic conservation laws based on the numerical density
of entropy production (the amount of violation of the theoretical entropy inequality). This density is used as an a
posteriori error which provides information if the mesh should be refined in the regions where discontinuities occur
or coarsened in the regions where the solution remains smooth. As due to the Courant–Friedrich–Levy stability
condition the time step is restricted and leads to time consuming simulations, we propose a local time stepping
algorithm. We also use high order time extensions applying the Adams–Bashforth time integration technique as
well as the second order linear reconstruction in space. We numerically investigate the efficiency of the scheme
through several test cases: Sod’s shock tube problem, Lax’s shock tube problem and the Shu–Osher test problem.
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1. Introduction

We are interested in the numerical integration of the following one-dimensional nonlinear hyperbolic system:






∂w
∂t + ∂f (w)

∂x = 0, (t, x) ∈ R+×R,

w(0, x) = w0(x), x ∈ R,
(1)
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where w : R+×R→ Rd stands for the vector state and f : Rd → Rd for the flux function.

Solving equation (1) with high accuracy is a challenging problem since, as is well known, its solutions can and will
break down at finite time, even if the initial data are smooth, and develop complex structures (shock wave interactions).
In such situation, uniqueness of the (weak) solution is lost, but it can be recovered by completing the system (1) with
the entropy inequality

∂s(w)
∂t + ∂ψ(w)

∂x ≤ 0, (2)

where (s, ψ) stands for a convex entropy–entropy flux pair. This inequality allows to select the physical relevant solution.
Moreover, in the regions where the solution is smooth the entropy inequality becomes an equality (the conservation
equation). In simple cases, it can be proved that the term missing in (2) to make it an equality is a Dirac mass.

The numerical approximation of (1)–(2) leads to the so-called numerical density of entropy production which is a measure
of the amount of violation of the entropy equation (as a measure of the local residual as in [3, 12, 14, 15]). This density
provides the information if the mesh should be refined locally (e.g. if the solution develops discontinuities) or coarsened
(e.g. if the solution is smooth and well-approximated), see Puppo [18–20] and Golay [9]. As shown in Puppo [20] (see also
references therein), even if the shocks are well-captured on the coarse grid using finite volume scheme such indicator
is able not only to provide the efficient a posteriori error, but also to reproduce the qualitative structure of the solution
and to pilot the adaptive scheme. Unfortunately, this does not occur efficiently on contact discontinuities where only
numerical diffusion is active. Nonetheless, the work by Guermond et al. [10] provides a remarkable and simple way to
solve this problem by making the numerical diffusion to be proportional to the numerical density of entropy production
(i.e. adding large numerical dissipation in the shock regions and almost no dissipation in the regions where the solution
remains smooth).

Explicit adaptive schemes are well known to be time consuming due to the CFL stability condition. The CPU-time
increases rapidly as the mesh is refined since the Courant–Friedrich–Lewy (CFL) stability condition imposes an upper
bound on δt/h where δt is the time step and h the finest mesh size. Nevertheless, the CPU-time can be significantly
reduced using the local time stepping algorithm, see e.g. [2, 16, 25]. In recent years, such numerical schemes have
been widely developed for equations which arise in many fluid flows: traffic flows, multi-phase flows, multi-layer flows,
etc. The local time stepping algorithm has been employed successfully for real two and three dimensional steady and
unsteady problems, see for instance [13, 16, 17, 20, 24, 26].

The aim of this paper is to construct a 1D multiscale adaptive numerical scheme for hyperbolic conservation laws. The
paper is organized as follows. In Section 2, we recall the finite volume approximation, the time integration methods and
fix the notation. Thereafter, in Section 3, we explain how to adapt the space grid using the numerical density of entropy
production. Combining both the time integration and mesh refinement, we show how to implement the multiscale adaptive
numerical scheme. The general algorithm and two approaches to distribute the flux between two cells of different levels
are compared in Section 4. Finally, in Section 5, efficiency of the multiscale adaptive scheme is shown through Sod’s
shock tube problem, Lax’s shock tube problem and the Shu–Osher test case.

2. Numerical approximation for hyperbolic conservation laws

2.1. One-dimensional finite volume formulation

We recall here the well-known construction of the numerical approximation of the following general nonlinear hyperbolic
conservation laws: 





∂w
∂t + ∂f (w)

∂x = 0, (t, x) ∈ R+×Ω,

w(0, x) = w0(x), x ∈ R,
(3)

where Ω ⊂ R, w ∈ Rd denotes the vector state (referred to as the conservative variables, see e.g. equations (13)) and f
denotes the flux governing the physical description of the flow.
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For the sake of simplicity, we consider here the one-dimensional case. The computational domain is split into control
volumes Ck = (xk−1/2, xk+1/2) of mesh size hk with xk±1/2 = xk ± hk /2. The unknowns w(t, x) are approximated by their
mean values on the cell Ck at time t,

wk (t) ≈
1
hk

∫

Ck
w(t, x)dx.

Integrating (3) over each cell and applying the Green formula we obtain

hk
∂wk
∂t + Fk+1/2(t)− Fk−1/2(t) = 0, (4)

where Fk±1/2 stands for the numerical flux at the interface xk±1/2, see for instance [6, 8, 27]. Denote the flux difference
between two interfaces of Ck as

δFk (t) = Fk+1/2(t)− Fk−1/2(t),

then equation (4) takes the form

hk
∂wk (t)
∂t + δFk (t) = 0. (5)

For practical purposes, let F = f (R (0±,wL,wR)), where R (0±,wL,wR) is the exact solution of the following Riemann
problem associated with the left wL and the right wR state:






∂w
∂t + ∂f (w)

∂x = 0,

w0(x) =
{
wL if x < 0,
wR if x > 0.

(6)

Then, the semidiscrete first order numerical scheme reads, see for instance [6, 8, 27],

hk
∂wk (t)
∂t + δFk (t) = hk

∂wk (t)
∂t + f

(
R (0−,wk (t),wk+1(t))

)
− f
(
R (0+,wk−1(t),wk (t))

)
.

Equation (3) is completed with the entropy inequality (2). As mentioned in the introduction, (2) not only allows to select
the physical relevant solution but also can be used to define the relevant mesh refinement criterion (with the help of the
so-called numerical density of entropy production, see Section 3). To this end, (2) is discretized using the same scheme
as applied to equation (3):

hk
∂s(wk )
∂t + δψk (t) = hk

∂s(wk )
∂t + ψ

(
R (0−,wk (t),wk+1(t))

)
− ψ

(
R (0+,wk−1(t),wk (t))

)
, (7)

where δψk (t) = ψk+1/2(t)− ψk−1/2(t) and R is the solution of the Riemann problem (6).

To achieve the second order approximation in space, the MUSCL reconstruction can be used, which we now recall for
the sake of completeness, see for instance [8, 27]. It consists of solving the Riemann problem (6) with the linearly
extrapolated initial data (

wk + Mk

2 , wk+1 −
Mk+1

2

)
,

where Mk is the approximation to the slope obtained with the MinMod limiter, i.e.,

Mk =
{
mmin

(
∆wk−1/2,∆wk ,∆wk+1/2

)
if m = sgn ∆wk−1/2 = sgn ∆wk = sgn ∆wk+1/2,

0 otherwise,

∆wk−1/2 = wk − wk−1, ∆wk+1/2 = wk+1 − wk , ∆wk = ∆wk−1/2 + ∆wk+1/2

2 .

Thus, we define the numerical flux as

Fk+1/2 = f
(
R
(

0−, wk + Mk

2 , wk+1 −
Mk+1

2

))
, Fk−1/2 = f

(
R
(

0+, wk−1 + Mk−1

2 , wk −
Mk

2

))
.
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2.2. Time integration

Now we focus on the numerical time integration of equations (5) and (7). First recall the well-known time integration
methods of Runge–Kutta and Adams–Bashforth and fix the notation.

2.2.1. Runge–Kutta schemes

Integrating equations (5) and (7) during the time step ]tn, tn+1[ of length δtn and evaluating the numerical fluxes at time
tn, we obtain the well-known Euler scheme,

wk (tn+1) = wk (tn)−
δtn
hk

δFk (tn), s(wk (tn+1)) = s(wk (tn))−
δtn
hk

δψk (tn). (8)

In order to increase the accuracy, apply the second order method as follows:

wk (tn+1) = wk (tn)−
δtn
hk

δFk (tn+1/2), wk (tn+1/2) = wk (tn)−
δtn
2hk

δFk (tn),

with the time discretization of the entropy the same as the time discretization of conservative variables. Now, as in [20],
we can define the numerical density of entropy production Snk as

Snk = s(wk (tn+1))− s(wk (tn))
δtn

+ δψk (tn)
hk

(9)

for the first order scheme, and
Snk = s(wk (tn+1))− s(wk (tn))

δtn
+ δψk (tn+1/2)

hk
for the second order scheme. The value

P =
∑

n,k

Snk δtnhk (10)

call the total numerical entropy production.

2.2.2. Adams–Bashforth schemes

In order to avoid intermediate computation and to spare computing time, one can use a multitime step method such
as the Adams–Bashforth method. The Adams–Bashforth method of order m consists of replacing the numerical flux of
equation (5) with a polynomial interpolation of the same order [11], i.e.

Fk+1/2(t) ≈
m−1∑

j=0

Lj (t)Fk+1/2(tn−j ),

where Lj (t) denotes the coefficients of the Lagrange polynomial. Let us note that this explicit approximation is built with
the fluxes previously computed and stored. If the polynomial coefficients are integrated (e.g. by the numerical Gauss
integration),

bj (δtn) = 1
δtn

∫ tn+1

tn
Lj (t)dt,

then the integration of equations (5) and (7) leads to

wk (tn+1) = wk (tn)−
m−1∑

j=0

δtn
hk

bj (δtn)δFk (tn−j ).
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For example, the second order Adams–Bashforth method reads

wk (tn+1) = wk (tn)−
δtn
hk

δFk (tn)−
δt2n

2δtn−1hk
(
δFk (tn)− δFk (tn−1)

)
.

The first order method is the same as (8). The Adams–Bashforth methods of the second and third order are stable under
the CFL condition with the bound equal to 1 [1]. For the stability purpose, we limit our applications to the second order
scheme.

Perform the discretization as in (7) and define the numerical density of the entropy production Snk by (9) for the first
order scheme and as

Snk = s(wk (tn+1))− s(wk (tn))
δtn

+ δψk (tn)
hk

+ δtn
2δtn−1hk

(
δψk (tn)− δψk (tn−1)

)

for the second order scheme. Finally, the total numerical entropy production define as in (10).

3. Mesh refinement

In order to compute the solution of a hyperbolic system with the prescribed accuracy, one can apply a strategy to adapt
the mesh automatically following the local error indicator.

3.1. Mesh refinement criterion

Many works studying the a posteriori error estimate base on mathematical arguments [28]. But paradoxically, to
our knowledge, very few works use a physical criterion [5]  the numerical density of entropy production. Recently,
Puppo [18, 19] has proved that the numerical density of entropy production can be used as a discontinuity indicator
(whenever solution develops shocks or contact discontinuities) and a local error indicator (whenever the solution remains
smooth). As the entropy inequality is mathematically and physically related to the system (3), the numerical density of
entropy production can serve (and actually does, as we will see in Section 5) for an accurate and useful mesh refinement
criterion. Let us show how to use it in the automatic mesh refinement framework.

3.2. Mesh refinement process

We present here the local mesh refinement procedure driven by the numerical density of entropy production. In order
to reduce the time necessary to manage the refinement, we use the so-called “macro cells” which could be refined by
generating hierarchical grids. Each cell can be split into two sub-cells. We thus produce a dyadic cells graph, whose
numbering (in basis 2) allows a quick computing scan to determine the adjacent cells. We make use of the following
notation: let kb be the index which makes reference to the macro cell numbered k and b be a binary number which
contains the hierarchical information of a sub-cell. In particular, the level of a sub-cell Ckb is defined as length (b)− 1.
For instance, the macro cell Ck0 of level 0 will be split into two sub-cells Ck00 and Ck01 of level 1. A mesh refinement
example is proposed in Figure 1.

Define the mesh refinement procedure as follows. First fix a mesh refinement parameter S. For instance, it can be the
mean value over the domain Ω at time tn,

S = 1
|Ω|

∑

kb

Snkb . (11)
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Figure 1. Example of the hierarchical dyadic tree.

Next define two coefficients 0 6 αmin 6 αmax 6 1, which determine the ratio of numerical production of entropy leading
to the mesh refinement or mesh coarsening: for each cell Ckb ,

• if Snkb > Sαmax, the mesh is refined and split into two sub-cells Ckb0 and Ckb1 ,

• if Snkb0 < Sαmin and Snkb1 < Sαmin, the mesh is coarsened into the cell Ckb .

For the first order scheme, if the cell Ckb is split into two sub-cells Ckb0 and Ckb1 , the averaged values wn
kb are projected

on each sub-cell:
wn
kb0 = wn

kb1 = wn
kb .

In the case of the second order method, as the gradient is available, let

wn
kb0 = wn

kb −
hkb
4
∂wn

kb
∂x , wn

kb1 = wn
kb + hkb

4
∂wn

kb
∂x .

Define the numerical fluxes between the two sub-cells (see Figure 2(a)) as

Fn
kb0−1/2 = Fn

kb−1/2, Fn
kb0+1/2 = Fn

kb1−1/2 = f (wn
kb ), Fn

kb1+1/2 = Fn
kb+1/2.

On the other hand, if two sub-cells Ckb0 and Ckb1 are coarsened, initialize the new cell Ckb with, see Figure 2(b),

wn
kb =

wn
kb0 + wn

kb1
2 , Fn

kb−1/2 = Fn
kb0−1/2, Fn

kb+1/2 = Fn
kb1+1/2.

(a) Mesh refinement. (b) Mesh coarsening.

Figure 2. Mesh refinement and mesh coarsening: construction of the fluxes.
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Remark 3.1.
It is hard to define an optimal mesh refinement criterion since the smaller the threshold the more the mesh is unnecessarily
refined, and the larger threshold the less the mesh is refined. Therefore, a good compromise is to use the average value
of the mesh refinement criterion (11). The other threshold parameters αmin and αmax allow to set the percentage of
the mesh refinement and mesh coarsening with respect to the quantity S. It is not surprising that these settings will
deteriorate or improve the accuracy of the numerical solution. For instance, the smaller αmin and αmax the more accurate
are the results to the expense of the computational time.

4. The local time stepping method

Unlike the Runge–Kutta method, the Adams–Bashforth time integration can be easily implemented in the local time
stepping framework in order to reduce the computational cost. We recall the main approach to update averaged quantities
and provide the general algorithm.

4.1. The local time stepping algorithm

In this subsection, we combine the local time stepping algorithm, see for instance [2], with the mesh refinement process
presented above. For the sake of clarity, we do not use the binary subscript notation introduced in the previous section.

Let hmin be the minimum diameter of the mesh and hmax the maximum diameter of the mesh. All cells of the mesh are
sorted in groups, called “levels” with respect to their diameter. The level of refinement Lk of the k th cell Ck is defined as

2N−Lkhmin 6 hk < 2N+1−Lkhmin,

where N stands for the maximum level
N = log2

hmax

hmin
+ 1.

The coarsest cells are therefore of level 1, while the finest cells are of level N.

Remark 4.1.
For any mesh, the previous inequality holds and in the particular case of the dyadic mesh we have

hk = 2N−Lkhmin.

Let δtn be the minimum time step at time tn according to the CFL condition associated with the smallest cell. The macro
time step ∆tn is then defined as

∆tn = 2N−1δtn.

We define the level of interface of two adjacent cells Lk+1/2 as

Lk+1/2 = max(Lk , Lk+1).

Assuming that the maximum level of refinement is N at the current time tn, following [2], the local time stepping algorithm
reads
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foreach i ∈ {1, 2N−1} do
Let j be the biggest integer such that 2j divides i
foreach interface xk+1/2 such that Lk+1/2 > N − j do

1. compute the integral of Fk+1/2(t) on the time interval 2N−Lk+1/2δtn,

2. distribute Fk+1/2(tn) to the two adjacent cells,

3. update only the cells of level greater than N − j .

end
end

Remark 4.2.
Note that according to this algorithm, the flow is computed more times in small cells than in the bigger ones.

Remark 4.3.
The minimum time step is defined by the CFL condition associated with the smallest cell at time tn, i.e.,

δtn <
hmin

max |ν| ,

where ν is the eigenvalue of the convection matrix Dwf (w).

Remark 4.4.
This scheme uses the Osher and Sanders [17] projection. This point is developed in subsection 4.2.

Let us illustrate for the global time advancement the local time stepping algorithm for the first order scheme (the principle
for the second order is essentially the same since we have to use the value of the flux stored in the two previous local
time steps). We consider the mesh composed of four cells of levels 1, 2 and 3 respectively, i.e., here N = 3, as displayed
in Figure 3. Let us denote by wn

m the state vector at time tn. At the first stage, i = 1, see Figure 3(a), only the small
cells are advanced with the step δtn, i.e. wn1

3 = w3(tn+ δtn) and wn1
4 = w4(tn+ δtn) are computed. While at the second

stage, i = 2, see Figure 3(b), the the small cells of level LN and the cells immediately larger at level LN−1 are involved.
The cells LN travel with the time step δtn, while the cells LN−1 travel with the time step 2δtn, etc.

4.2. Computation of the flux

In this subsection we recall the procedure introduced by Osher and Sanders [17], and Tang and Warnecke [26] for
computation of the flux at the cell interface of two different levels. For the sake of simplicity, we assume here only two
time increments which means that we consider cells of only two different kinds, say h(x) = hk0 = h0 for x < xk0+1/2 and
h(x) = hk0+1 = h0/2 for x > xk0+1/2. Thus, for every k 6 k0, all cells Ck are of level Lk0 and for every k > k0, all cells Ck
are of level Lk0 + 1 (as displayed in Figure 4). Let ∆tn = tn+1 − tn = 2δtn be the macro time step. To avoid boundary
terms, we consider the example with the initial condition with compact support.

4.2.1. A simple projection method

The Osher and Sanders scheme is defined as follows, see Figure 4(b):

wn+1/2
k =






wn
k if k 6 k0,

wn
k −

∆tn
2hk

δFn
k if k > k0,

for all k ∈ Z,
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(a) At time tn + δtn . (b) At time tn + 2δtn .

(c) At time tn + 3δtn . (d) At time tn+1 = tn + 4δtn .

Figure 3. Illustration of the global time advancement for the first order scheme.

(a) The Osher and Sanders projection. (b) The Tang and Warnecke projection.

Figure 4. Projection methods.

and
wn+1
k = wn

k −
∆tn
2hk

(
δFn

k + δFn+1/2
k

)
, k ∈ Z. (12)

It was pointed by Tang and Warnecke [26] that the present scheme loses the conservative property and is locally
inconsistent in the sense of the truncation error. Indeed, at the intermediate time step, one has

∑

k∈Z

wn+1/2
k =

∑

k∈Z

wn
k + ∆tn

2hk0+1
Fn
k0+1/2(wn

k0 ,w
n
k0+1)
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which shows that this scheme is locally nonconservative. At the next intermediate step, conservativity is preserved, i.e.,

∑

k∈Z

wn+1
k =

∑

k∈Z

wn+1/2
k

but the global conservativity is lost. The fact that the scheme is not consistent in the sense of truncation error can be
observed in the simplest case of the one-dimensional transport equation, as done in [26],

∂tw + c∂xw = 0

with a positive constant c. In this case, using the Godunov solver, the scheme (12) writes for k = k0 as

wn+1
k0+1 − wn

k0+1

∆tn
− c

2hk0

(
wn
k0+1 − wn

k0 +
(
wn+1/2
k0+1 − wn

k0

))
= 0.

Assuming w smooth enough, writing the Taylor expansion of w at the point xk0+1 at times tn+1 and tn+1/2, we deduce the
following equation:

∂tw + c∂xw = −c4
∆t
h ∂tw + O(h,∆t).

Thus, if ∆t/h converges to a constant d > 0 then the previous equation does not converge to the initial transport
equation.

4.2.2. A natural projection method

Contrary to the Osher and Sanders [17] approach, Tang and Warnecke [26] propose the following scheme:

wn+1/2
k = wn

k −
∆tn
2hk

δFn
k , wn+1

k = wn+1/2
k − ∆tn

2hk

{
δFn

k if k 6 k0,
δFn+1/2

k if k > k0,
k ∈ Z.

One can easily check that the global conservativity is also lost and

∑

k∈Z

wn+1
k =

∑

k∈Z

wn
k + ∆tn

2hk0+1
Fn+1/2
k0+1/2(wn

k0 ,w
n
k0+1).

Although the scheme is not conservative, they claim that it is consistent in the sense of the truncation error.

Even if the Osher and Sanders projection leads to nonconservative and inconsistent scheme at the space-time grid
between two levels of refinement, it has the advantage to be less time consuming than the second one. Let us also note
that the apparent loss of consistency on the local truncation error seems not to affect the actual error of the scheme (as
we will see in subsection 5.1.1, see also [4, 22] for interesting issues). On the contrary, Puppo and Semplice [20] do not
lose consistency and conservativity because their procedure does not produce the mass and the fluxes are well computed
at the cell interface between the two levels of refinement. Nevertheless, their approach requires more evaluation of the
flux than the Osher and Sanders projection since they use updated neighbourhood state (non-projected as done in the
Osher and Sanders approach) .

5. Numerical experiments

We now present some results using the adaptive multiscale scheme constructed in Sections 3 and 4. The discussion is
limited to studying the robustness, accuracy and gain of the CPU-time of several schemes. To this end, we compare
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results to those from the exact solution or a reference solution. These include Sod’s shock tube problem, Lax’s shock
tube problem, and the Shu–Osher test case.

For all test cases, numerical solutions are computed using the following one-dimensional gas dynamics equations for
ideal gas:

∂ρ
∂t + ∂ρu

∂x = 0, ∂ρu
∂t + ∂(ρu2 + p)

∂x = 0, ∂ρE
∂t + ∂(ρE + p)u

∂x = 0, p = (γ− 1)ρε, (13)

where ρ, u, p, γ, E are the density, velocity, pressure, ratio of the specific heats (set to 1.4) and the total energy
E = ε + u2/2 (where ε is the internal specific energy), respectively. Using conservative variables w = (ρ, ρu, ρE)T, we
classically define the entropy by

s(w) = −ρ ln p
ργ

and the entropy flux by ψ(w) = us(w) for equations (13).

Notation and settings

• In what follows, we perform several numerical tests using the first and second order schemes. We will refer as
AB1 to the first order scheme, AB2 to the second order Adams–Basforth scheme, and RK2 to the second order
Runge–Kutta scheme. AB2 and RK2 use the MUSCL reconstruction. Moreover, all computations are made with
a dynamic grid, except if the acronym ends with the capital letter “U” which refers to the fixed uniform grid. All
computations are made with the uniform time step, except if the acronym ends with the capital letter “M” which
refers to the local time stepping algorithm.

• We will also compare the adaptive numerical solution with the one computed on the fixed uniform grid. To have
a coherent support of comparison, the solution on the fixed grid will be computed with NLmax cells. NLmax stands
for the average number of cells used during the simulation of the adaptive scheme with the maximum level Lmax.

• All presented results display the density which is positive. Thus, in all figures the numerical density of entropy
production is plotted with the reversed sign to overlap with the density.

• For all numerical tests, the initial mesh is adapted to the initial data during a few iterations (except for the
numerical solution computed on the fixed uniform grid) and we have used the following threshold parameters:
mesh refinement parameter αmax = 0.01, mesh coarsening parameter αmin = 0.001, and mesh refinement parameter

S = 1
|Ω|

∑

kb

Snkb .

• ρex will stand for the exact solution of Sod’s or Lax’s problems.

5.1. Sod’s shock tube problem

We first consider the classical Sod’s shock tube problem [23] which models the one-dimensional flow resulting from the
rupture of a membrane separating air with different density and pressure inside a shock tube. The advantage of this
test case is that the exact solution exists which enables a detailed comparison between the approximate results and the
exact solution.

The test consists of the one-dimensional Riemann problem with the following Riemann data:

x ∈ [−1, 1], (ρ, u, p)(0, x) =
{

(1, 0, 1), x 6 0,
(0.125, 0, 0.1), x > 0.

(14)

1402

Author c
opy



M. Ersoy, F. Golay, L. Yushchenko

It consists of two nonlinear waves (one the right shock and one the left rarefaction) connected through a contact
discontinuity. This basic test provides information on how well a scheme captures and resolves shocks and contact
discontinuities and how well the correct density of the rarefaction wave is reproduced. It is used as the first test.

The computational domain here is [−1, 1] with prescribed free boundary conditions. For each numerical computation,
the following parameters have been used:

CFL : 0.25,
Simulation time (s) : 0.4,
Initial number of cells : 200,
Maximum level of mesh refinement : Lmax.

5.1.1. The Osher–Sanders and the Tang–Warnecke projections

In subsection 4.2, we have recalled the computation of the numerical flux between two levels of refinement. We compare
here the Tang–Warnecke (TW) [26] and the Osher–Sanders (OS) [17] projections. In particular, we numerically show
that even if the TW projection leads to a consistent scheme, for Lmax large enough (here 6), numerical oscillations are
still observed, see Figure 5(b) and 5(c). The same behavior is obtained for the OS projection as displayed in Figure
5(a)–5(c). We can reduce these effects using the smoothing grid technique. It means that we prevent two adjacent cells
from having a level difference greater than two. This method minimizes the loss of consistency and conservativity error.
We have displayed on Figure 5 the density of the solution at time t = 0.4 using the first order scheme AB1M (using
AB2M leads to the same conclusion). To compare these methods, we have also computed the CPU-time. Without the
smoothing effect we have

CPU-time for TW projection = 330.27 s, CPU-time for OS projection = 85.02 s,

and with the smoothing effect we have

CPU-time for TW projection = 288.21 s, CPU-time for OS projection = 80.04 s.

As displayed in Figure 5 and the CPU performance above, even if the results using the TW projection are more accurate
than the OS ones, the TW projection is more time consuming because it is necessary to update the fluxes on large
cells at small intermediate times if they border a smaller cell. As a consequence, we will use in what follows the OS
projection. Let us also note that such a problem appears when Lmax is large. In order to avoid such oscillations, we will
limit Lmax to 5 which is large enough for practical applications.

5.1.2. Numerical convergence

We study the numerical convergence of the AB1, AB1M, AB2, AB2M and RK2 schemes. We compare the CPU-time and
the accuracy of the numerical solutions for the level 1 6 Lmax 6 5 (i.e. on the fixed and dynamic grid). The analytical
solution of the Riemann problem (13) with the Riemann data (14) is computed using 5 000 uniform cells.

The numerical density of entropy production as a discontinuity and error indicator

As emphasized by Puppo [18, 19], the numerical density of entropy production can be used as a discontinuity and a local
error indicator (everywhere where the solution remains smooth). Thus, the mesh refinement parameter (11) combined
with the numerical density of entropy production, see also Remark 3.1, can provide a useful tool to refine/adapt the mesh
around discontinuities and sharply varying regions. In Figures 6–7, we plot the density ρ for levels Lmax = 2 and 5,
which we compare with the numerical solution computed on the fixed grid with NLmax cells which are respectively 254
and 681.

As we observe in Figures 6–7, the numerical density of entropy production for levels Lmax = 2 and 5 captures the contact
discontinuity, see Figures 6(d) and 7(d), and the shock discontinuity, see Figures 6(e) and 7(e). Moreover, the numerical
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(a) Numerical solution using the OS projection. (b) Numerical solution using the TW projection.

(c) Without smoothing effect. (d) With smoothing effect.

Figure 5. Sod’s shock tube problem: numerical oscillations with/without smoothing effect at time t = 0.4 with Lmax = 6. The Tang–Warnecke and
the Osher–Sanders projections are used.

density of entropy production reproduces the behavior of the error made on ρ, as displayed in Figures 6(b) and 7(b), and
the mesh is automatically refined in those areas. Far from such regions, the mesh is coarsened since the exact solution
and the adaptive one coincide with each other (the precise order and error will be provided in the sequel). The accuracy
is, of course, improved when we increase the value of Lmax as we can compare in Figures 6 and 7.

The total production of entropy P (10) corresponds to the discrete l1t l1x-norm of the numerical density of entropy production.
Through several numerical tests, we observe that P decreases as we refine. For instance, for Lmax = 2 one has P = 0.0098,
while for Lmax = 5 one has P = 0.0073.

Numerical order

We now perform several numerical tests to compute the rate of convergence of the first and second order adaptive
schemes. We use the discrete l1t l1x-norm of the error on the density, see Figure 8, and the discrete l1x-norm of the error
on the density at time t = 0.4. As the number of cells is not fixed, we consider the average number of cells NLmax for
levels Lmax = 1, 2, 3, 4, 5 used as abscissa in Figure 8(a)–8(d).

As expected, see for instance [7, 20], the convergence of second order methods is of the first order on the fixed grid due
to the presence of discontinuities in the solution, as displayed in Figure 8(b)–8(d). Nevertheless, the adaptive scheme
improves the rate of convergence for the first as well as for the second order scheme, see Figure 8(a)–8(d). Moreover,
using the local time stepping or the uniform time step, the numerical orders are similar, see Figure 8(a)–8(d), and Table 1.

1404

Author c
opy



M. Ersoy, F. Golay, L. Yushchenko

(a) Density and numerical density of entropy production. (b) Mesh refinement level, numerical density of entropy production and
local error.

(c) Zoom on the rarefaction. (d) Zoom on the contact discontinuity.

(e) Zoom on the shock.

Figure 6. Sod’s shock tube problem: solution at time t = 0.4 using the AB1M scheme on the dynamic grid with Lmax = 2 and the AB1 scheme on
the fixed uniform grid of 254 cells.

The rate of convergence is considerably increased by the adaptive scheme and, in our experiences, it can be improved by
changing the threshold parameters αmin and αmax at the expense of the CPU-time. With the present threshold parameters,
the order of the AB1M scheme is approximately 2.
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(a) Density and numerical density of entropy production. (b) Mesh refinement level, numerical density of entropy pro-
duction and local error.

(c) Zoom on the rarefaction. (d) Zoom on the contact discontinuity.

(e) Zoom on the shock.

Figure 7. Sod’s shock tube problem: solution at time t = 0.4 using the AB1M scheme on the dynamic grid with Lmax = 5 and the AB1 scheme on
the fixed uniform grid of 681 cells.
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(a) ‖ρex−ρ‖l1t l1x with respect to the averaged number of cells
for the schemes of the first order.

(b) ‖ρex−ρ‖l1t l1x with respect to the averaged number of cells
for the schemes of the second order.

(c) ‖ρex−ρ‖l1x with respect to the averaged number of cells
for the schemes of the first order at time t = 0.4.

(d) ‖ρex−ρ‖l1x with respect to the averaged number of cells
for the schemes of the second order at time t = 0.4.

(e) CPU-time-‖ρex−ρ‖l1t l1x with respect to the CPU-time for
the schemes of the first order.

(f ) CPU-time-‖ρex−ρ‖l1t l1x with respect to the CPU-time for
the schemes of the second order.

Figure 8. Sod’s shock tube problem: numerical order.
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Accuracy and CPU-time

Until now, the relevance of the adaptive scheme has been obtained relatively to the number of cells. We now focus on
the efficiency of the adaptive scheme with respect to the CPU-time1. For the previous numerical tests, we plot the error
on the density with respect to the CPU-time, see Figure 8(e)–8(f). As expected, the use of local time stepping algorithm
reduces considerably the CPU-time for a given error on the density. For instance, using Lmax = 2, the AB1 and AB1M
schemes use the same number of average cells (254) and compute with the same accuracy (l1t l1x-norm of the error on the
density is 0.0041) but AB1M computes in 0.65 s against 1.17 s for AB1. It means that AB1M computes approximatively
two times faster than AB1 which proves the efficiency of the local time stepping algorithm. The same statement is also
observed for the second order scheme, see Table 1.

Table 1. Numerical order on the density error using the l1t l1x -norm and l1x -norm at time t = 0.4 with respect to the averaged number of cells, and
the l1t l1x -norm on the density error with respect to the CPU-time (in the log10 scale).

I Method I ‖ρ−ρex‖l1t l1x vs. NLmax ‖ρ−ρex‖l1x vs. NLmax ‖ρ−ρex‖l1t l1x vs. CPU-time

AB1U 0.70 0.72 0.41
AB1 1.86 1.93 0.64
AB1M 2.15 2.16 0.77
AB2U 0.77 0.77 0.42
AB2 1.74 1.84 0.57
AB2M 2.21 2.18 0.76
RK2U 0.76 0.76 0.42
RK2 1.68 1.80 0.55

5.2. Lax’s shock tube problem

Lax’s shock tube problem is similar to Sod’s shock tube problem, except that the amplitude of the shock is stronger and
the initial condition has a discontinuity in the velocity,

x ∈ [−1, 1], (ρ, u, p)(0, x) =
{

(0.445, 0.698, 3.528), x 6 0,
(0.5, 0, 0.571), x > 0.

(15)

This second test is used in order to confirm similar conclusion obtained for Sod’s shock tube problem. As in the previous
case, the exact solution is known and computed from the Riemann problem (13) with the Riemann data (15) using 5 000
uniform cells.

The computational domain here is [−1, 1] with the prescribed free boundary conditions. For each numerical computation,
the following parameters have been used:

CFL : 0.5,
Simulation time (s) : 0.13,
Initial number of cells : 200,
Maximum level of mesh refinement : Lmax.

1 Intel(R) Core(TM) i5-2500 CPU @3.30GHz
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(a) Density and numerical density of entropy production. (b) Mesh refinement level and local error.

(c) Zoom on the rarefaction. (d) Zoom on the contact discontinuity.

Figure 9. Lax’s shock tube problem: solution at time t = 0.13 using the AB1M scheme with Lmax = 2.

As done before, we first represent the numerical solution compared to the exact one for levels Lmax = 2 and 5.
In Figures 9–10, we represent the density of the solution at time t = 0.13, plot its numerical density of entropy pro-
duction, the error made on the density and the level of refinement. We also perform, as done previously, the numerical
order of the first and second order schemes in Figure 11(a)–11(d), and compare the accuracy versus the CPU-time in
Figure 11(e)–11(f), and Table 2.

Even if Lax’s shock tube problem introduces a huge shock wave with respect to Sod’s shock tube problem, the same
conclusion holds, namely, the numerical density of entropy production reproduces behavior of the error done as we can
observe in Figures 9–10 and thus the mesh is automatically refined where it is necessary. Moreover, we observe again
an improvement of the numerical approximation when the adaptive scheme is used and exceptional convergence of first
order adaptive scheme, see Figure 11(a) and Table 2. Finally, the computational time is drastically reduced when the
local time stepping algorithm is used, see Figure 11(e)–11(f), and Table 2.

5.3. The Shu–Osher test case

The next test case concerns the Shu and Osher problem [21] in which the Mach 3 shock moves to the right and collides
with an entropy disturbance moving to the left. We focus on the solution at time t = 0.18 which develops three shocks in
a highly oscillating regime. Thus, it is hard to compute an accurate numerical solution with the fixed uniform grid which
requires a large number of cells to precisely capture oscillating regions. In this section we compare adaptive schemes
of the first and second order. In particular, we numerically verify that for the given accuracy, the local time stepping
algorithm is less time consuming than the standard one.
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(a) Density and numerical density of entropy production. (b) Mesh refinement level and local error.

(c) Zoom on the leg of the rarefaction. (d) Zoom on the contact discontinuity.

Figure 10. Lax’s shock tube problem: solution at time t = 0.13 using the AB1M scheme with Lmax = 5.

Table 2. Numerical order on the density error using the l1t l1x -norm and l1x -norm at time t = 0.13 with respect to the averaged number of cells, and
the l1t l1x -norm on the density error with respect to the CPU-time (in the log10 scale).

I Method I ‖ρ−ρex‖l1t l1x vs. NLmax ‖ρ−ρex‖l1x vs. NLmax ‖ρ−ρex‖l1t l1x vs. CPU-time

AB1U 0.66 0.69 0.27
AB1 3.20 3.31 0.66
AB1M 3.55 3.56 0.82
AB2U 0.60 0.62 0.32
AB2 3.24 3.40 0.70
AB2M 3.31 3.11 0.78
RK2U 0.73 0.70 0.38
RK2 3.25 3.43 0.65

The Shu and Osher initial conditions are

(ρ, u, p)(0, x) =
{

(3.857143, 2.629369, 10.3333), x 6 0.1,
(1 + 0.2 sin(50x), 0, 1), x > 0.1,

and the computational domain is [0, 1] with the prescribed free boundary conditions.
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(a) ‖ρex−ρ‖l1t l1x with respect to the averaged number of cells for the
schemes of the first order.

(b) ‖ρex−ρ‖l1t l1x with respect to the averaged number of cells for the
schemes of the second order.

(c) ‖ρex−ρ‖l1x with respect to the averaged number of cells for the
schemes of the first order at time t = 0.13.

(d) ‖ρex−ρ‖l1x with respect to the averaged number of cells for the
schemes of the second order at time t = 0.13.

(e) CPU-time-‖ρex−ρ‖l1t l1x with respect to the CPU-time for the
schemes of the first order.

(f ) CPU-time-‖ρex−ρ‖l1t l1x with respect to the CPU-time for the
schemes of the second order.

Figure 11. Lax’s shock tube problem: numerical order.
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As a reference solution, we compute the solution on the uniform fixed grid (20 000 cells) with the RK2 scheme. The
density of the reference solution at time t = 0.18 and its numerical density of entropy production are displayed in
Figure 12(a). This solution being computed on a very fine fixed grid, as predicted by the theory, the density of entropy
production is almost concentrated at the shocks. Even if small productions are present between 0.5 6 x 6 0.75, one can
consider such solution as an “exact” one.

(a) Reference solution. (b) Density and numerical density of entropy production.

(c) Zoom on oscillating region. (d) Numerical order: ‖ρex−ρ‖l1x with respect to the averaged number of
cells for the schemes of the first and second order at time t = 0.18.

Figure 12. The Shu–Osher test case.

For each numerical computation, we have used the following parameters:

CFL : 0.219,
Simulation time (s) : 0.18,
Initial number of cells : 500,
Maximum level of mesh refinement : Lmax = 4.

In Figure 12(b), we plot the density of the reference solution, the one by the AB1, AB2 and RK2 schemes and their
numerical density of entropy production. Starting from 500 cells, the adaptive schemes lead to very close solutions for
each scheme and the numerical density of entropy production vanishes everywhere where the solution is smooth and
every solution fits to the reference solution. However, focusing closely on the oscillating area between 0.5 6 x 6 0.7,
one can observe that, as expected, RK2 is better than AB2 which is better than AB1. These results are also confirmed
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by the computation of the numerical order displayed in Figure 12(d): it was not true in the two previous test cases, see
Figures 8–11, as emphasized in subsection 5.1 (for which the numerical order for AB1, for instance, was greater than
the second order methods).

Table 3 summarizes the computation of the total entropy production, the discrete l1x-norm of the error on the density, the
CPU-time, the average number of cells and the maximum number of cells at the final time t = 0.18 for the level Lmax = 4.

Table 3. Comparison of numerical schemes of the first and second order.

I Method I P ‖ρ−ρref‖l1x CPU-time NLmax maximum number of cells

AB1 0.288 4.74 10−2 181 1574 2308
AB1M 0.288 4.80 10−2 120 1572 2314

AB2 0.287 2.75 10−2 170 1391 2023
AB2M 0.286 2.74 10−2 108 1357 1994
RK2 0.285 2.08 10−2 299 1375 2005

As said before, the hierarchy in terms of accuracy is very well respected as we also see in Table 3 for the error on
density or the total production of entropy. We see again the case where the total production of entropy is an accuracy
indicator.

It is well known that the AB2 scheme is less stable and less accurate than the RK2 scheme. Nonetheless, in the
framework of the local time stepping, for almost the same accuracy the AB2M scheme computes three times faster than
the RK2 which is a significant gain in time.

6. Concluding remarks and perspectives

In this paper, first and second order methods in space and time are coupled with an adaptive algorithm employing the
local time stepping, obtaining the adaptive numerical scheme in which the grid is locally refined or coarsened according
to the entropy indicator. Several numerical tests have been performed, they show an impressive improvement with respect
to uniform grids even if a large number of cells is used.

All numerical tests also show that the numerical density of entropy production combined with the proposed mesh re-
finement parameter is a relevant local error indicator (everywhere where the solution remains smooth) and discontinuity
detector (large shocks and oscillating solutions are very well-captured). Moreover, we have shown that the implementa-
tion of the local time stepping algorithm can significantly reduce the computational time keeping the order of accuracy
unchanged.

We considered the Tang–Warnecke and the Osher–Sanders projections. We have shown that even if the Tang–Warnecke
projection is consistent, the solution develops numerical instabilities at a large maximum level of refinement. This
statement has been numerically reproduced and we have proposed a numerical smoothing grid technique which prevents
two adjacent cells from having a level difference greater than two. As a consequence the amplitude of such oscillation is
minimized. Nevertheless, since both methods lead to oscillating solutions, the Osher–Sanders projection offers a good
compromise between accuracy and computing cost reduction. Finally, we plan to improve the efficiency of the adaptive
scheme to capture accurately the contact discontinuities and to extend this work for 2D/3D numerical applications.
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