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ABSTRACT Suffusion is an internal erosion process whichuogevhen finer soil particles
are detached by seepage flow and start moving withénpore space of larger particles.
Suffusion can be viewed as clay/water interface emsihe aim of this study is to use a
numerical model for simulating surface erosion adag at a fluid/soil interface subject to a
flow process at pore scale. Balance equations withpjuelations are used. A penalization
procedure including a fictitious domain method s&ed to compute the Stokes flow around
obstacles, in order to avoid body-fitted unstruetlimeshes and instead use fast and efficient
finite volume approximations on Cartesian meshes. &folution of the water/soil interface
is described by using a Level Set function. Thétylof the model to predict suffusion is
confirmed by several numerical simulations.

RESUME La suffusion est un processus par lequel lesiqdes les plus fines du sol se
détachent de la matrice solide et sont transporpsasun écoulement interstitiel a travers les
pores du milieu. Le but de cette étude est de présein modeéle numérique pour simuler
I'érosion apparaissant a linterface eau/sol a Ikmlle des pores. Une procédure de
pénalisation ou « domaine fictif » est utilisée psimuler I'écoulement de Stokes autours
d’'obstacles, afin de s’affranchir des contraintes whaillage, grace a un efficace solveur
volume fini sur grille cartésienne. L'évolution denterface eau/sol est décrite par des
fonctions Level Set. L'aptitude du modele a prédees phénomenes de suffusion est
confirmée par quelques exemples.
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1. Introduction

Suffusion occurs when finer soil particles are detal by seepage flow and start
moving within the pore space of larger particlekisTis an internal erosion process,
that can be observed in non-uniform or broadly-gdadoils. Internal erosion is a
phenomenon that is not fully understood (Fell and B007; Gutiérreet al, 2008).
Understanding and modeling the removal of finet patrticles caused by flows of
water through the pore domain is of major imporéimcgeomechanics.

The initiation and development of internal erospyocesses should be analyzed
using a continuum approach at the macroscopic .s¢#devever, this approach
should also be considered at the microscopic sedlen dealing with internal
erosion. Both approaches must be consistent with @sher. At pore scale, the
suffusion process can be viewed as an interfactai@n process. In this paper, the
model of soil erosion developed by (Goktyal, 2010) is applied to suffusion.

Several models of erosion of a sand layer have pegposed in the framework
of the continuum theory of mixtures (Papamiclkedsal, 2001; Vardoulaki®t al,
1996; Vardoulakist al, 2001; Chauchatt al, 2010). In these studies, the erosion
process is assumed to involve a smooth transitiom fsolid-like to fluid-like
behaviour. These models are relevant for permestile such as granular media.
However, most cohesive soils like clay exhibit vémw permeability and internal
flows generated external flows are likely to belaetgd in these soils.

The philosophy underlying the present approactediffrom previous theories of
surface erosion in that our description deals wthgular (or discontinuous)
fluid/soil interfaces (Bonelli and Brivois, 2008yiRois et al, 2007; Golayet al,
2010; Lachouettet al, 2008), rather than with smooth fluid/soil intexs. The aim
here is to model at micro scale the erosion ofteesive fine soil generated by a pore
laminar flow of water, tangential to the fine swiiter interface.

The paper is organized as follows: Section 2 surizm@sthe equations governing
the Stokes fluid flow and the evolution of the dlisoil interface at pore scale.
Section 3 introduces, the mathematical model obthlry periodic homogenization,
and a penalized model obtained with the fictitielsnains method, leading to a
unified formulation for the equations in the whalemain (fluid and soil). Finally,
Section 4 presents several illustrative exampleslewbection 5 presents the
conclusions.
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2. Governing equations

2.1. Pore-scaleflow with surface erosion of the clay matrix

The porous medium is considered as an assemblgfeRentative Elementary
Volumes (REV) of the microstructure (Fig. 1). Th&WR occupies a total volume
Qrev Of typical lengthlgey. This REV is partitioned into three disjoint rego a
connected pore domai@ ., a clay matrix domairfQq., and a sand grain domain
Qsana - The pore domain is saturated by a viscous incessile fluid of densityos
and viscosityy; .

A
\4

Figure 1. Schematic of Representative Elementary Volume

For the sake of simplicity, physico-chemical effeike dissolution and
deposition) are not considered. The clay matrix igid and homogeneous erodible
material, of densitypu., . The sand grains are rigid, homogeneous and raatitde.
Rigid clay and sand have zero velocityz 0 in Qg,, and Qg .

The Reynolds number is small and inertial effects @meglected. The Stokes
equations corresponding to this steady and sloeouss flow in the pore domain are

Om=0 in Qpoe (1]
O =0p in Qpoe (2]
T=24,D(U) in Qpgre [3]

where O is the differential operator with respect to thenmscopic space variable
X, p is the fluid pressurey is the fluid velocity vector, and is the viscous
deviatoric stress tensor. The deviatoric straia tahsor is

D(u)=%[Du+DTu—%(D ) |j (4]
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2.2. Surface erosion of the clay matrix

We takel to denote any fluid/solid interface, amd to denote the unit vector
normal tol" oriented from the fluid toward the soil (Fig. &).our description[” is
a purely geometric separating surface with no tiesls. We takda] to denote the
jump of any physical variable acrossI.

As usual, no slip condition is assumed on the fagtid interfacerl :
u,=0onfl [3]
whereur =[I —n On] @ is the tangential flow velocity of .

The jump equations on the sand/water interface tfieecontinuity of both the
normal velocity and the stress vector

uh=0o0onTg,; NT [6]
[tth-pn]=0o0nTlg, NT 71

We assume that erosion occurs only at the interfage N T' of the clay matrix
and the pore domain, whei&y,, = 9Q¢,, andT = dQp,. . The erosion process is
therefore external to the clay matrix, and doesaffetct its porosity or density.

Due to the erosion process, a mass flux crosggsnI'. As a resultl'¢,, N T
is a moving interface, but not a material interfafe is not defined by the same
particles at different times. We take to denote the normal celerity of.

The total flux of eroded materiah crossingI'c,, N T is defined as follows:
m=p(g —ulh) onTg,, NT (8]

p denotes the total density of the fluid fs..and the density of the soil in
Qa., - The jump equations on the clay/water interfacsdg the continuity of the
mass flux of eroded material and the relationslajwben the stress vector and the
velocity:

[[m:[] =0 on FC](”/ Nnr [9]
[tth-pn]=-m[u] onT¢, NT [10]

Shear induced surface erosion is described with fttlewing constitutive
erosion law:

, {ker(r—rc) if 7>7,
m= onl

. [11]
0 otherwise

7=l -nOn] @G| onT [12]
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where 7 is the tangential shear stress at the interfaamrfeterr. is the threshold
shear stress and parameker is the coefficient of surface erosion.

The no-slip assumption Eq. [5] and the momentumpjugg. [10] imply the
continuity of the tangential shear stress acrasd/#olid interfacel” ([[r]] =0).

The continuity of the mass flux of eroded mateEgl [9] gives the relationship
between this mass flux and the interface normarite

M= g, G ON Loy NT [13]

Here, we assume a slow erosion processk ||u|. This key assumption has
several consequences at the first order appro>omati

- the continuity of the mass flux of eroded matefiq. [9] implies the continuity
of normal velocities, i.,euh =0 on I ;

- the momentum jump Eq. [10] shows that normalssis are continuous across
rie[n@m-p]=0onT;

- the quantity of particles present in the fluichdz assumed to be small enough
not to significantly affect the properties of tharmer fluid; this is the dilute
suspension flow assumption.

Mass flux of

eroded material
m r

Water g
velocity

Interface
celerity

Figure 2. Diagram of the suffusion process viewed as theasarérosion of the clay
matrix inside a pore

2.3. Ordersof magnitude

Let us now check what the important physical patanseof the problem are. We
take L to denote the macroscopic characteristic lengifesandAp° to denote the
characteristic variation of pressum over L. For example,L > /rey may be the
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sample length in a laboratory test. These quastiige the order of magnitude of
the macroscopic pressure gradient, which definesoidding.

We take /; to denote the characteristic length scale of ttemsed fluid at the
pore scale, which is a given parameter of the sys# the first order,/; can be
considered to have the same order of magnitudkeeasand grain diameter. For the
sake of clarity, we introduce the characteristingtntial stress on the interface,
the characteristic microscopic fluid velocty and the characteristic celerity of the
fluid/solid interface during erosiov; .

Orders of magnitude are given by Eqg. [2] for theashstress, by Eqg. [3] for the
fluid velocity, and by Eqgs. [11] and [13] for theosion rate, as follows:

¢ Ap° (.1,
-t p V- oy KeeTr [14]
L qu pCIay
The Reynolds number and the erosion number ofithedre defined as follows:
VE \Y,
Razpf f ,grzpf fker [15]
Z-I' pCIay

The assumptions of a laminar flowR{<«1) and a slow erosion process
(& <1) are written as:

0
e 'ufz min ﬂ@ [16]
L j o Ky

The erosion number was introduced by Bonelli anigidss (2008), and (Golagt
al., 2011), and represents the ratio between the fhailibcity and the erosion
velocity (£ =RV, /V,). From this finding, we infer the physical meaniofythe
coefficient of erosionk,, (s/m). This coefficient, which drives the erosiormgess
and depends on the eroded material considered bmayewed as a ratio between
the surface clay viscosityisy, and a microscopic length scale characteristidhef t
erosion processe : Ker = Ociyl er/ Liciay. IN @ SENSE L1y Characterize the time scale
of tear resistance of soil particles.

The dilute flow assumption correspondsve < V¢, written as:

£<< Zf

— [17]
pCIay /uf

The physical meaning of., remains to be defined. However, this length scale
cannot be greater than the pore length scéle< /¢ . We assume therefore thas
and /; are of the same order of magnitudé.; = ¢ . With this assumption, the
dilute flow assumption readg/; < sy Orders of magnitude are as follows:
M =102 Pa.cand teiey >1 Pa.s for bulk clay viscosity. This is consistent withro
assumption of slow erosion process and dilute flow.
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The characteristic timescale linked to the intddlcerosion process is
te =/ /Ve (Bonelli and Brivois, 2008). In the present sitoat dealing with
suffusion driven by a pressure gradient, this tragsturns out to be:

t,, = Lemk [18]

Ker AP

3.  The numerical model

3.1. Homogenization and governing equations at the first order

We now assume that the domain is a periodic mediintomplete set of
equations similar to equations [1]-[13] has alredben used to study different
systems by using periodic homogenization (Bouddstual., 1996). It is assumed
that the REV lengthirey and the characteristic microscopic length are small
compared to the macroscopic characteristic lengtlesL : ¢; <lgey < L. The
periodic homogenization procedure leads to th@¥alg well-known results:

- the zero-order pore water presspt is independent of local coordinake
Op° =0 in Qpoe [19]

- the governing equation for the higher order poater pressurgy* and for the
zero-order microscopic velocity’ is

O@° =0 in Qpoe [20]
op° .

Au® =0p'+—— in Qpore 21
Hy P *ox P [21]
u’=0onr [22]
u® and p' are Qge -periodic [23]

L(ro—rc) if 7>71,

Cr =1 Poiy oNTgg NT [24]
0 otherwise
G- =00NnTg, NT [25]

r° =2y, ||[I -n On]MDu°) || onl [26]
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where dp® / 0X denotes the macroscopic pressure gradient whicbristant on the
REV. This vector is the loading of the system ahd brder of magnitude is
[|op° /0X [FAp°® /L.

3.2. Thefictitious domain method

The aim here is to simulate a fluid flow with a nrayboundaryl” . A classical
method consists in building a mesh of the fluidt path cell edges belonging tb .
It is necessary to regularly adapt the mesh or sbnas the boundary varies. This
numerical process can become prohibitive, espgcialien considering a three-
dimensional problem. That is why a spatial disesdton that is not fitted to the
interface is used. This method is called the ‘iiotis domain method” or “penalized
method”. The main idea of this approach consistsoirning the fluid flow problem
in a bigger fixed domain instead of the movingdldiomain. This method is popular
because it allows the use of fairly structured rassfhe fictitious domain method is
now widely used (in particular for fluid-porous-gblflows) and has been
mathematically justified (see e.g. Anggital, 1999; Angot, 1999; Bostt al, 2010;
Diaz-Goancet al, 2003; Khadrat al, 2000; Ramieret al, 2007).

Let Qrev =QrorelJ(0Q ) be a fluid and multi-solids domain with boundary

0Q . The penalized method allows describing the benasi the two sub-domains
by using equations valid for the whole domain. Tikiglone by introducing a new
term in the momentum balance equation, this tinimee in Qrey
op° | M i .
AU =0p'+—+—(ZHWin Q 27
H; p axX Ks(i ) REV [27]
Penalization coefficientKs is a small number that has the dimension of a

geometric permeability andd' is the characteristic function of the soil domain
(which is unity withinQ; and zero elsewhere). In practice we use oKgr=107 or
Ks =107°.

As the last term of the right-hand side of Eq. [B7%ero in the fluid domain, the
equation reduces to the Stokes equation. In tHedsonain, penalization leads to
very low values ofu® and the left-hand side of Eq. [27] is negligibldis time the
equation reduces to a Darcy like equation.

3.3. Determination of the interface by the Level Set Method

The Level Set method is an appropriate formulation considering sharp
interfaces. It consists in introducing a functignthat is negative in the fluid domain
Qrae and positive in the solid domain. In the case efesal solid domains, we
introduce several functiong' that are positive in the solid domaif and negative
elsewhere.
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Interface I" is represented by the zero level setf. The characteristic
function H' of the soil domain is therefore defined as follows:

Y= lify >9, 28]
0 otherwise

A possible and relevant approach is to chooséhigtion as the signed distance
to the interface. The motion of the interface isstlidetermined by the evolution of
Y. Keeping track of the whole functiogi' while only its zero level set is relevant
may appear inefficient, but it in fact simplifiesth the mathematical formulation
and numerical implementation.

This approach can be considered as a front capturiathod as no explicit
information on the interface is required during tbhemputational process. The
interface is recovered at the end of computatiotobgting the zero level. Cartesian
meshes are used because capturing methods doguirerbody-fitted grids instead
of front tracking methods. The accuracy of the mgéfin of the interface strongly
depends on the numerical scheme applied to thegoahequation.

This Level Set formulation was introduced by Oshed Sethian (1981) and is
widely used for multi-fluid flows (e.g. Chargf al, 1996; Olson and Kreiss, 2005;
Sussmaret al, 1994), with a fictitious domain approach (e.ga6talatet al, 2009)
in both two and three-dimensional cases (e.g. Pianda and Bryant, 2006).

Assuming that the zero level set gf and the interface coincide at=0, then
they must coincide at all times provided thtsatisfies d¢' /ot +cr ¢ =0 at
the interface. This condition is automatically sééid assuming thaty' is then
driven by a transport equation:

o Femy' =0 [29]

where c is an extension on the whole domain of the interfeeleritycr defined on
the interface (Golayet al, 2011). The normal to the interface is given bg th
gradient of the level set function:

- Oy
"o .

As the erosion process is much slower than the rflaid flow, the two
phenomena are split. For the Stokes solver, a&firotume formulation is developed
on a Cartesian staggered grid (Harlow and WelclB5):9%the physical domain is
given by the pressure mesh, while the velocityivem at the centre of each face of
the cell. We use the Augmented Lagrangian methodrder to deal with the
constraint of divergence-free velocity (see e.gtif@nd Glowinski, 1983; Vincent
et al, 2004; Galusinski and Vigneaux, 2008).
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For the erosion process, spatial derivatives amapoted with a fifth-order
WENO (weighted essentially non-oscillatory) schef@iang & Peng, 2000), while
time derivatives are computed with a fourth-ordanée-Kutta (RK4) scheme.

The tangential stress at the interface must benastd with accuracy. A detailed
description of our numerical model is given in God al. (2011).

As a finite volume method is used, fluxes crosdimg boundary of each cell
(faces) are computed, and a Cartesian grid ensbe¢she discretization of each
periodic side is the same. The periodicity is thaturally and simply introduced, by
declaring that the cell adjacent to one side oRE& is the neighbor of the opposite
cell on the periodic side (see e.g. Guus et aB419

4, Results

4.1. Erosion of soil cylinders

We considered a simple test case, namely a Stakesihder a constant pressure
gradient in a 2D periodic medium. The test simadathe erosion of fixed cylinders
of soil in a channel (Figure 3). The soil cylindai a radius of 3mm and a density
of 2000 kg/m. Each REV had a length and height of 1cm respelgtivihe fluid
inside had a density of 1000 kg/mand a viscosity of I®Pa.s. We considered an
erosion process without threshold. €0) but with erosion coefficienk,, =107 s/m,
which led to an erosion timescale f =2.1C¢ s. A regular mesh of 100x100 and
periodic conditions on the boundaries of the REVenmplemented.

000 00O0COOEONEOO
eeececo0o0cocoe REV
000 00O0CGCOOEONEOO =
oooooE-‘::- > o
IR X 3
000000 O0O0OCFO
IR X E

Flow >

lcm

Figure 3. Erosion of soils cylinders in a 2D periodic mediufe arrow shows
the flow direction and magnitude.

We imposed a macroscopic pressure gradient frotrtdefight (Ap°=0.1 Pa).
Figure 4 shows the evolution of the cylinder shahe&e to erosion. The line
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represents the zero Level Set function, i.e. thepshof the eroded soil, and the
vectors are the velocity field. It can be seen,thatexpected for the Stokes flow, the
shape and flow are symmetrical, and that the uppdrlower parts of the cylinder
are those most eroded.

Figure 4. Shape of the soil cylinder at/'t,, =0.13, 0.26, 0.36, 0.44The arrow
shows the flow direction and magnitude.

4.2. Erosion of four balls

In order to check the feasibility of such computatin three-dimensions, we
tested the erosion of four spheres in a cubic REVWwgth 1cm, subjected to a
constant pressure gradient of 0.1Pa/cm. The testlaied the erosion of fixed
spheres of sail in a channel (Figure 5). The gulileses had a radius of 2mm and a
density of 2000 kg/th The fluid inside had a density of 1000 kg/amd a viscosity
of 10° Pa.s. We considered an erosion process withoushble (7. =0) but with
erosion coefficient ke, =10° s/m, which leads to an erosion timescale of
te =2.1C¢ s. A regular mesh of 40x40x40 and periodic condiioon the
boundaries of the REV were implemented. This sitraiawvas computed with only
one Level Set function. The velocity field incredsas the pressure gradient was
imposed and the soil eroded.
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Figure 5. Shape of the eroded balls #aft,, = 0, 0.135, 0.25, 0.315, 0.355, 0.41
The arrow shows the flow direction and magnitude.

4.3. Suffusion

In order to demonstrate that interfacial erosionthat micro-scale can simulate
the suffusion process, we considered a represeatakementary volume composed
of thirty randomly placed sand grains surroundedlby (Figure 6). Consequently, a
porous medium (porosity 0.386) was obtained in fttlee sand grains were non
erodible while the clay matrix was. The sand grdiad a radius 30Qm while that
of the particles of the clay layer was 64 with a density of 2000 kginThe REV
was 1cm long and 1cm high. The fluid had a dersit¥000 kg/m and a viscosity
of 10° Pa.s. We considered an erosion process with ahthiceof 1Pa and an
erosion coefficient of 10 s/m. The erosion timescale was =1x10 s with a
reference pressure drafp®=20 Pa. A regular mesh of 150x150 was used with nd
periodic conditions on the boundaries of the REV
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Figure 6. Model of suffusion: representative elementary valum

Let a denote the ratio of the current volume fractionct#y divided by the
initial volume fraction of clay, i.e. ifo =1 no clay is eroded, itr =0 all clay is
eroded. The effect of varying the pressure gradgeshown in Figure 7. The erosion
process increased as the macroscopic pressureegradse. For low values, the
erosion process stops because the shear strelss tibw becomes lower than the
microscopic threshold shear stress, so that sosidua clay remains. Qualitatively,
these results are in concordance with those ofatalnye (Sterpi, 2003). Figure 8
presents the evolution of the REV under a macrdscgpessure gradient
Ap°=30 Pa.

1
01

g — Ap’=20Pa

3 0 — Ap°=30Pa

% 0, == Ap°=40Pa

5 = Ap°=50Pa

g 0 0

T == Ap =100Pa
0

0 1.2 3 4 5 6 7 8 9 10
Adimensional timeé .,

Figure 7. Evolution of volume fraction of clay with time
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Figure 8. Evolution of the REV at/t, =0, 0.3, 0.6, 0.9,1.2,1.5,1.8,2.1,2.4
The arrow shows the flow direction and magnitude.

5. Conclusion

Soil erosion is the removal of material causedHhsy ¢roding power of a water
flow and this is basically an interfacial proceShe goal of this work was to better
understand the suffusion erosion process, whichsiglly considered as a bulk

process at the macroscopic scale. At the pore,dtaten be viewed as an interfacial
erosion process.
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We developed a numerical model for simulating sigfarosion occurring at a
fluid/soil interface subject to a flow process abre scale, on a periodic
representative elementary volume. Balance equatiithgump relations were used.
A penalization procedure allowed computing Stokgsagions around obstacles, by
using a fictitious domain method to avoid bodyefittunstructured meshes and use
fast and efficient finite volume approximations Gartesian meshes. The water/soil
interface evolution was described with a Level 3atction. The qualitative
comparison between the results of the present niglettudy and previously
published experimental data supports the validityus approach.

The present work is not intended to provide aceuraimerical results for a
suffusion related issue. Rather, attention is fedusxplicitly on the more limited
goal of bridging the gap between the counter-ivalibulk erosion model and our
intuition that erosion is basically an interfacfocess and on giving trends and
orders of magnitude. The main result of this apginda as follows: the coefficient of
surface erosion appears to be a relevant parafoetitre suffusion bulk erosion law.
Of course, other important phenomena should beiders in a comprehensive
model of suffusion with a more realistic REV, likeposition and clogging, two-
phase seepage flow and concentrated flow, dissolatnd physico-chemical effects.
For a better description of a realistic media, mterid to develop several numerical
improvements such as implementing a parallel sawennstructured grids.

Acknowledgments: This work was funded by the French National Redear
Agency (ANR) through the COSINUS program (CARPEINR Broject no.ANR-
08-COSI-002).
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