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ABSTRACT. Suffusion is an internal erosion process which occurs when finer soil particles 
are detached by seepage flow and start moving within the pore space of larger particles.  
Suffusion can be viewed as clay/water interface erosion. The aim of this study is to use a 
numerical model for simulating surface erosion occurring at a fluid/soil interface subject to a 
flow process at pore scale. Balance equations with jump relations are used. A penalization 
procedure including a fictitious domain method is used to compute the Stokes flow around 
obstacles, in order to avoid body-fitted unstructured meshes and instead use fast and efficient 
finite volume approximations on Cartesian meshes. The evolution of the water/soil interface 
is described by using a Level Set function.  The ability of the model to predict suffusion is 
confirmed by several numerical simulations. 

RÉSUMÉ. La suffusion est un processus par lequel les particules les plus fines du sol se 
détachent de la matrice solide et sont transportées par un écoulement interstitiel à travers les 
pores du milieu. Le but de cette étude est de présenter un modèle numérique pour simuler 
l’érosion apparaissant à l’interface eau/sol à l’échelle des pores. Une procédure de 
pénalisation ou « domaine fictif » est utilisée pour simuler l’écoulement de Stokes autours 
d’obstacles, afin de s’affranchir des contraintes de maillage, grâce à un efficace solveur 
volume fini sur grille cartésienne. L’évolution de l’interface eau/sol est décrite par des 
fonctions Level Set. L’aptitude du modèle à prédire les phénomènes de suffusion est 
confirmée par quelques exemples. 

KEYWORDS: Suffusion, internal erosion, finite volume, level set, interface, fictitious 
domain. 

MOTS-CLÉS : Suffusion, érosion interne, volumes finis, level set, interface, domaines fictifs. 
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1. Introduction 

Suffusion occurs when finer soil particles are detached by seepage flow and start 
moving within the pore space of larger particles. This is an internal erosion process, 
that can be observed in non-uniform or broadly-graded soils. Internal erosion is a 
phenomenon that is not fully understood (Fell and Fry, 2007; Gutiérrez et al., 2008). 
Understanding and modeling the removal of finer soil particles caused by flows of 
water through the pore domain is of major importance in geomechanics. 

The initiation and development of internal erosion processes should be analyzed 
using a continuum approach at the macroscopic scale. However, this approach 
should also be considered at the microscopic scale when dealing with internal 
erosion. Both approaches must be consistent with each other. At pore scale, the 
suffusion process can be viewed as an interfacial erosion process. In this paper, the 
model of soil erosion developed by (Golay et al., 2010) is applied to suffusion.  

Several models of erosion of a sand layer have been proposed in the framework 
of the continuum theory of mixtures (Papamichos et al., 2001; Vardoulakis et al., 
1996; Vardoulakis et al., 2001; Chauchat et al., 2010). In these studies, the erosion 
process is assumed to involve a smooth transition from solid-like to fluid-like 
behaviour. These models are relevant for permeable soils such as granular media. 
However, most cohesive soils like clay exhibit very low permeability and internal 
flows generated external flows are likely to be neglected in these soils. 

The philosophy underlying the present approach differs from previous theories of 
surface erosion in that our description deals with singular (or discontinuous) 
fluid/soil interfaces (Bonelli and Brivois, 2008; Brivois et al., 2007; Golay et al., 
2010; Lachouette et al., 2008), rather than with smooth fluid/soil interfaces. The aim 
here is to model at micro scale the erosion of a cohesive fine soil generated by a pore 
laminar flow of water, tangential to the fine soil/water interface. 

The paper is organized as follows: Section 2 summarizes the equations governing 
the Stokes fluid flow and the evolution of the fluid/soil interface at pore scale. 
Section 3 introduces, the mathematical model obtained by periodic homogenization, 
and a penalized model obtained with the fictitious domains method, leading to a 
unified formulation for the equations in the whole domain (fluid and soil). Finally, 
Section 4 presents several illustrative examples while section 5 presents the 
conclusions.  
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2. Governing equations 

2.1. Pore-scale flow with surface erosion of the clay matrix 

The porous medium is considered as an assembly of Representative Elementary 
Volumes (REV) of the microstructure (Fig. 1). The REV occupies a total volume 

REVΩ  of typical length REVl . This REV is partitioned into three disjoint regions: a 
connected pore domain poreΩ , a clay matrix domain clayΩ  and a sand grain domain 

sandΩ . The pore domain is saturated by a viscous incompressible fluid of density fρ  
and viscosity fµ .  

PoreΩ

ClayΩ

SandΩ

REVl

REVΩ

 

Figure 1. Schematic of Representative Elementary Volume 
 

For the sake of simplicity, physico-chemical effect (like dissolution and 
deposition) are not considered. The clay matrix is a rigid and homogeneous erodible 
material, of density clayρ . The sand grains are rigid, homogeneous and non erodible. 
Rigid clay and sand have zero velocity: 0=u  in ClayΩ  and SandΩ . 

The Reynolds number is small and inertial effects are neglected. The Stokes 
equations corresponding to this steady and slow viscous flow in the pore domain are 

0∇ ⋅ =u  in PoreΩ  [1] 

p∇ ⋅ = ∇ττττ  in PoreΩ  [2] 

2 ( )fµ= D uττττ  in PoreΩ  [3] 

where ∇  is the differential operator with respect to the microscopic space variable 
x , p  is the fluid pressure, u  is the fluid velocity vector, and ττττ  is the viscous 

deviatoric stress tensor. The deviatoric strain rate tensor is  

1 1
( ) ( )

2 3
T = ∇ + ∇ − ∇ ⋅ 

 
D u u u u I  [4] 
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2.2. Surface erosion of the clay matrix 

We take Γ  to denote any fluid/solid interface, and n  to denote the unit vector 
normal to Γ  oriented from the fluid toward the soil (Fig. 2). In our description, Γ  is 
a purely geometric separating surface with no thickness. We take a� �  to denote the 
jump of any physical variable a  across Γ .  

As usual, no slip condition is assumed on the fluid/solid interface Γ : 

0T =u  on Γ  [5] 

where [ ]T = − ⊗ ⋅u I n n u  is the tangential flow velocity on Γ . 

The jump equations on the sand/water interface give the continuity of both the 
normal velocity and the stress vector 

0⋅ =u n  on SandΓ ∩ Γ  [6] 

� � 0p⋅ − =n nττττ  on SandΓ ∩ Γ  [7] 

We assume that erosion occurs only at the interface ClayΓ ∩ Γ  of the clay matrix 
and the pore domain, where Clay ClayΓ = ∂Ω  and PoreΓ = ∂Ω . The erosion process is 
therefore external to the clay matrix, and does not affect its porosity or density.  

Due to the erosion process, a mass flux crosses ClayΓ ∩ Γ . As a result, ClayΓ ∩ Γ  
is a moving interface, but not a material interface: Γ  is not defined by the same 
particles at different times. We take  cΓ  to denote the normal celerity of Γ .  

The total flux of eroded material mɺ  crossing ClayΓ ∩ Γ is defined as follows: 

( )m cρ Γ= − ⋅ɺ u n  on ClayΓ ∩ Γ  [8] 

ρ  denotes the total density of the fluid in PoreΩ and the density of the soil in 
ClayΩ . The jump equations on the clay/water interface yields the continuity of the 

mass flux of eroded material and the relationship between the stress vector and the 
velocity: 

� � 0m =ɺ  on ClayΓ ∩ Γ  [9] 

� � � �p m⋅ − = − ɺn n uττττ  on ClayΓ ∩ Γ  [10] 

Shear induced surface erosion is described with the following constitutive 
erosion law: 

( ) if 

0 otherwise
er c ck

m
τ τ τ τ− >

= 


ɺ  on Γ  [11] 

[ ]τ = − ⊗ ⋅ ⋅I n n nττττ  on Γ  [12] 
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where τ  is the tangential shear stress at the interface. Parameter cτ  is the threshold 
shear stress and parameter erk  is the coefficient of surface erosion.  

The no-slip assumption Eq. [5] and the momentum jump Eq. [10] imply the 
continuity of the tangential shear stress across fluid/solid interface Γ  (� � 0τ = ). 

The continuity of the mass flux of eroded material Eq. [9] gives the relationship 
between this mass flux and the interface normal celerity: 

Claym cρ Γ=ɺ  on ClayΓ ∩ Γ  [13] 

Here, we assume a slow erosion process: cΓ ≪ u . This key assumption has 
several consequences at the first order approximation: 

- the continuity of the mass flux of eroded material Eq. [9]  implies the continuity 
of normal velocities, i.e. 0⋅ =u n  on Γ ; 

- the momentum jump Eq. [10] shows that normal stresses are continuous across 
Γ , i.e. � � 0p⋅ ⋅ − =n nττττ  on Γ ; 

- the quantity of particles present in the fluid can be assumed to be small enough 
not to significantly affect the properties of the carrier fluid; this is the dilute 
suspension flow assumption.  

 

Clay

Sand

Γ

�
u

Γc

�
n mɺ

Water
velocity

Interface
celerity

Γ

Γ

Γ
Mass flux of

eroded material
mɺ

SandΓ

ClayΓ

 

Figure 2. Diagram of the suffusion process viewed as the surface erosion of the clay 
matrix inside a pore 

 

2.3. Orders of magnitude  

Let us now check what the important physical parameters of the problem are. We 
take L  to denote the macroscopic characteristic length scale, and 0p∆  to denote the 
characteristic variation of pressure p  over L . For example, REVL≫ ℓ  may be the 
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sample length in a laboratory test. These quantities give the order of magnitude of 
the macroscopic pressure gradient, which defines the loading. 

We take fℓ  to denote the characteristic length scale of the sheared fluid at the 
pore scale, which is a given parameter of the system. At the first order, fℓ  can be 
considered to have the same order of magnitude as the sand grain diameter. For the 
sake of clarity, we introduce the characteristic tangential stress on the interface τ Γ , 
the characteristic microscopic fluid velocity fV  and the characteristic celerity of the 
fluid/solid interface during erosion erV .  

Orders of magnitude are given by Eq. [2] for the shear stress, by Eq. [3] for the 
fluid velocity, and by Eqs. [11] and [13] for the erosion rate, as follows: 

0
f p

L
τ Γ

∆ℓ
∼ , f

f
f

V
τ

µ
Γℓ

∼ , er
er

Clay

k
V

τ
ρ

Γ∼  [14] 

The Reynolds number and the erosion number of the flow are defined as follows: 

2
f f

e

V
R

ρ
τ Γ

= , f f er
r

Clay

V kρ
ρ

=E  [15] 

The assumptions of a laminar flow ( 1eR ≪ ) and a slow erosion process 
( 1r ≪E )  are written as: 

0

2
min ,f f Clay

f erf f

p

L k

µ µ ρ
ρ

 ∆ <<   
 ℓℓ

 [16] 

The erosion number was introduced by Bonelli and Brivois (2008), and (Golay et 
al., 2011), and represents the ratio between the fluid velocity and the erosion 
velocity ( /r e er fR V V=E ). From this finding, we infer the physical meaning of the 
coefficient of erosion erk (s/m). This coefficient, which drives the erosion process 
and depends on the eroded material considered, may be viewed as a ratio between 
the surface clay viscosity Clayµ  and a microscopic length scale characteristic of the 
erosion process erℓ : /er Clay er Clayk ρ µ= ℓ . In a sense, Clayµ characterize the time scale 
of tear resistance of soil particles. 

The dilute flow assumption corresponds to er fV V≪ , written as: 

fer

Clay f

k

ρ µ
ℓ

≪  [17] 

The physical meaning of erℓ  remains to be defined. However, this length scale 
cannot be greater than the pore length scale : er f≤ℓ ℓ . We assume therefore that erℓ  
and fℓ  are of the same order of magnitude : er f=ℓ ℓ . With this assumption, the 
dilute flow assumption reads f Clayµ µ≪ . Orders of magnitude are as follows: 

310  Pa.sfµ −=  and 1 Pa.sClayµ >  for bulk clay viscosity. This is consistent with our 
assumption of slow erosion process and dilute flow. 
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The characteristic timescale linked to the interfacial erosion process is 
/er f ert V= ℓ  (Bonelli and Brivois, 2008). In the present situation dealing with 

suffusion driven by a pressure gradient, this timescale turns out to be: 

0

Clay
er

er

L
t

k p

ρ=
∆

 [18] 

3. The numerical model 

3.1. Homogenization and governing equations at the first order 

We now assume that the domain is a periodic medium. A complete set of 
equations similar to equations [1]-[13] has already been used to study different 
systems by using periodic homogenization (Bouddour et al., 1996). It is assumed 
that the REV length REVl  and the characteristic microscopic length fℓ  are small 
compared to the macroscopic characteristic length scale L : f REVl L<ℓ ≪ . The 
periodic homogenization procedure leads to the following well-known results: 

- the zero-order pore water pressure 0p  is independent of local coordinate x : 

0 0p∇ =  in PoreΩ  [19] 

- the governing equation for the higher order pore water pressure 1p  and for the 
zero-order microscopic velocity 0u  is 

0 0∇ ⋅ =u  in PoreΩ  [20] 

0
0 1

f

p
pµ ∂∆ = ∇ +

∂
u

X
 in PoreΩ  [21] 

0 0=u  on Γ  [22] 

0u  and  1p  are RevΩ -periodic [23] 

0( ) if 

0 otherwise

er
c c

Clay

k

c
τ τ τ τ

ρΓ

 − >= 



 on ClayΓ ∩ Γ  [24] 

0cΓ =  on SandΓ ∩ Γ  [25] 

0 02 [ ] ( )fτ µ= − ⊗ ⋅ ⋅I n n D u n  on Γ  [26] 
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where 0 /p∂ ∂X  denotes the macroscopic pressure gradient which is constant on the 
REV. This vector is the loading of the system and the order of magnitude is 

0 0|| / || /p p L∂ ∂ = ∆X . 

3.2. The fictitious domain method  

The aim here is to simulate a fluid flow with a moving boundary Γ . A classical 
method consists in building a mesh of the fluid part with cell edges belonging to Γ . 
It is necessary to regularly adapt the mesh or remesh as the boundary varies. This 
numerical process can become prohibitive, especially when considering a three-
dimensional problem. That is why a spatial discretization that is not fitted to the 
interface is used. This method is called the “fictitious domain method” or “penalized 
method”. The main idea of this approach consists in solving the fluid flow problem 
in a bigger fixed domain instead of the moving fluid domain. This method is popular 
because it allows the use of fairly structured meshes. The fictitious domain method is 
now widely used (in particular for fluid-porous-solid flows) and has been 
mathematically justified (see e.g. Angot et al., 1999; Angot, 1999; Bost et al., 2010; 
Diaz-Goano et al., 2003; Khadra et al., 2000; Ramiere et al., 2007). 

Let ( )REV Pore i
i

Ω = Ω ∪Ω∪  be a fluid and multi-solids domain with boundary 

∂Ω . The penalized method allows describing the behavior of the two sub-domains 
by using equations valid for the whole domain. This is done by introducing a new 
term in the momentum balance equation, this time defined in REVΩ  

0
0 1 0( )f i

f
i

s

p
p H

K

µ
µ ∂∆ = ∇ + + Σ

∂
u u

X
 in REVΩ  [27] 

Penalization coefficient sK  is a small number that has the dimension of a 
geometric permeability and iH  is the characteristic function of the soil domain i 
(which is unity within iΩ  and zero elsewhere). In practice we use often 710sK −= or 

910sK −= . 

As the last term of the right-hand side of Eq. [27] is zero in the fluid domain, the 
equation reduces to the Stokes equation. In the soil domain, penalization leads to 
very low values of 0u  and the left-hand side of Eq. [27] is negligible. This time the 
equation reduces to a Darcy like equation. 

3.3. Determination of the interface by the Level Set Method 

The Level Set method is an appropriate formulation for considering sharp 
interfaces. It consists in introducing a function ψ  that is negative in the fluid domain 

PoreΩ  and positive in the solid domain. In the case of several solid domains, we 
introduce several functions iψ  that are positive in the solid domains iΩ and negative 
elsewhere. 
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Interface Γ  is represented by the zero level set of iψ . The characteristic 
function iH  of the soil domain i  is therefore defined as follows: 

1 if 0,

0 otherwise

i
iH

ψ >
= 


  [28] 

A possible and relevant approach is to choose this function as the signed distance 
to the interface. The motion of the interface is thus determined by the evolution of 

iψ . Keeping track of the whole function iψ  while only its zero level set is relevant 
may appear inefficient, but it in fact simplifies both the mathematical formulation 
and numerical implementation. 

This approach can be considered as a front capturing method as no explicit 
information on the interface is required during the computational process. The 
interface is recovered at the end of computation by locating the zero level. Cartesian 
meshes are used because capturing methods do not require body-fitted grids instead 
of front tracking methods. The accuracy of the definition of the interface strongly 
depends on the numerical scheme applied to the transport equation.  

This Level Set formulation was introduced by Osher and Sethian (1981) and is 
widely used for multi-fluid flows (e.g. Chang et al., 1996; Olson and Kreiss, 2005; 
Sussman et al., 1994), with a fictitious domain approach (e.g. Chantalat et al., 2009) 
in both two and three-dimensional cases (e.g. Prodanovic and Bryant, 2006). 

Assuming that the zero level set of iψ and the interface coincide at 0t = , then 
they must coincide at all times provided that iψ satisfies  / 0i itψ ψΓ∂ ∂ + ⋅∇ =c  at 
the interface. This condition is automatically satisfied assuming that iψ  is then 
driven by a transport equation:  

0
i

i

t

ψ ψ∂ + ⋅∇ =
∂

c  [29] 

where c  is an extension on the whole domain of the interface celerity Γc  defined on 
the interface (Golay et al., 2011). The normal to the interface is given by the 
gradient of the level set function: 

i
i

i

ψ
ψ

∇=
∇

n  [30] 

As the erosion process is much slower than the main fluid flow, the two 
phenomena are split. For the Stokes solver, a finite volume formulation is developed 
on a Cartesian staggered grid (Harlow and Welch, 1965): the physical domain is 
given by the pressure mesh, while the velocity is given at the centre of each face of 
the cell. We use the Augmented Lagrangian method in order to deal with the 
constraint of divergence-free velocity (see e.g. Fortin and Glowinski, 1983; Vincent 
et al., 2004; Galusinski and Vigneaux, 2008).  
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For the erosion process, spatial derivatives are computed with a fifth-order 
WENO (weighted essentially non-oscillatory) scheme (Jiang & Peng, 2000), while 
time derivatives are computed with a fourth-order Runge-Kutta (RK4) scheme. 

The tangential stress at the interface must be estimated with accuracy. A detailed 
description of our numerical model is given in Golay et al. (2011). 

As a finite volume method is used, fluxes crossing the boundary of each cell 
(faces) are computed, and a Cartesian grid ensures that the discretization of each 
periodic side is the same.  The periodicity is than naturally and simply introduced, by 
declaring that the cell adjacent to one side of the REV is the neighbor of the opposite 
cell on the periodic side (see e.g. Guus et al., 1994). 

4. Results 

4.1. Erosion of soil cylinders 

We considered a simple test case, namely a Stokes flow under a constant pressure 
gradient in a 2D periodic medium.  The test simulated the erosion of fixed cylinders 
of soil in a channel (Figure 3). The soil cylinders had a radius of 3mm and a density 
of 2000 kg/m3. Each REV had a length and height of 1cm respectively. The fluid 
inside had a density of 1000 kg/m3 and a viscosity of 10-3 Pa.s. We considered an 
erosion process without threshold (cτ =0) but with erosion coefficient erk =10-3 s/m, 
which led to an erosion timescale of 52.10  sert = . A regular mesh of 100x100 and 
periodic conditions on the boundaries of the REV were implemented. 

 

Flow

1
 cm

1 cm

3 mm

REV

 

Figure 3. Erosion of soils cylinders in a 2D periodic medium. The arrow shows 
the flow direction and magnitude. 

We imposed a macroscopic pressure gradient from left to right ( 0p∆ =0.1 Pa). 
Figure 4 shows the evolution of the cylinder shape due to erosion. The line 
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represents the zero Level Set function, i.e. the shape of the eroded soil, and the 
vectors are the velocity field. It can be seen that, as expected for the Stokes flow, the 
shape and flow are symmetrical, and that the upper and lower parts of the cylinder 
are those most eroded.  

 

 

Figure 4. Shape of the soil cylinder at / ert t =0.13, 0.26, 0.36, 0.44. The arrow 
shows the flow direction and magnitude. 

4.2. Erosion of four balls 

In order to check the feasibility of such computation in three-dimensions, we 
tested the erosion of four spheres in a cubic REV of length 1cm, subjected to a 
constant pressure gradient of 0.1Pa/cm. The test simulated the erosion of fixed 
spheres of soil in a channel (Figure 5). The soil spheres had a radius of 2mm and a 
density of 2000 kg/m3. The fluid inside had a density of 1000 kg/m3 and a viscosity 
of 10-3 Pa.s. We considered an erosion process without threshold ( cτ =0) but with 
erosion coefficient erk =10-3 s/m, which leads to an erosion timescale of 

52.10  sert = . A regular mesh of 40x40x40 and periodic conditions on the 
boundaries of the REV were implemented. This simulation was computed with only 
one Level Set function. The velocity field increased as the pressure gradient was 
imposed and the soil eroded. 

 

Flow 
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Figure 5. Shape of the eroded balls at / ert t = 0, 0.135, 0.25, 0.315, 0.355, 0.41. 
The arrow shows the flow direction and magnitude. 

4.3. Suffusion 

In order to demonstrate that interfacial erosion at the micro-scale can simulate 
the suffusion process, we considered a representative elementary volume composed 
of thirty randomly placed sand grains surrounded by clay (Figure 6). Consequently, a 
porous medium (porosity 0.386) was obtained in which the sand grains were non 
erodible while the clay matrix was. The sand grains had a radius 300 µm while that 
of the particles of the clay layer was 640 µm with a density of 2000 kg/m3. The REV 
was 1cm long and 1cm high. The fluid had a density of 1000 kg/m3 and a viscosity 
of 10-3 Pa.s. We considered an erosion process with a threshold of 1Pa and an 
erosion coefficient of 10-5 s/m. The erosion timescale was 51 10  sert = ×  with a 
reference pressure drop 0p∆ =20 Pa. A regular mesh of 150x150 was used with nd 
periodic conditions on the boundaries of the REV 

 

 

FlowFlow
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Figure 6. Model of suffusion: representative elementary volume 

Let α  denote the ratio of the current volume fraction of clay divided by the 
initial volume fraction of clay, i.e. if 1α =  no clay is eroded, if 0α =  all clay is 
eroded. The effect of varying the pressure gradient is shown in Figure 7. The erosion 
process increased as the macroscopic pressure gradient rose. For low values, the 
erosion process stops because the shear stress of the flow becomes lower than the 
microscopic threshold shear stress, so that some residual clay remains. Qualitatively, 
these results are in concordance with those obtained by (Sterpi, 2003). Figure 8 
presents the evolution of the REV under a macroscopic pressure gradient 

0p∆ =30 Pa. 
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Figure 7. Evolution of volume fraction of clay with time 
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Figure 8. Evolution of the REV at / ert t = 0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4. 

The arrow shows the flow direction and magnitude. 

5. Conclusion 

Soil erosion is the removal of material caused by the eroding power of a water 
flow and this is basically an interfacial process. The goal of this work was to better 
understand the suffusion erosion process, which is usually considered as a bulk 
process at the macroscopic scale. At the pore scale, it can be viewed as an interfacial 
erosion process.  

Flow 
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We developed a numerical model for simulating surface erosion occurring at a 
fluid/soil interface subject to a flow process at pore scale, on a periodic 
representative elementary volume. Balance equations with jump relations were used. 
A penalization procedure allowed computing Stokes equations around obstacles, by 
using a fictitious domain method to avoid body-fitted unstructured meshes and use 
fast and efficient finite volume approximations on Cartesian meshes. The water/soil 
interface evolution was described with a Level Set function. The qualitative 
comparison between the results of the present modelling study and previously 
published experimental data supports the validity of our approach. 

The present work is not intended to provide accurate numerical results for a 
suffusion related issue. Rather, attention is focused explicitly on the more limited 
goal of bridging the gap between the counter-intuitive bulk erosion model and our 
intuition that erosion is basically an interfacial process and on giving trends and 
orders of magnitude. The main result of this approach is as follows: the coefficient of 
surface erosion appears to be a relevant parameter for the suffusion bulk erosion law. 
Of course, other important phenomena should be considered in a comprehensive 
model of suffusion with a more realistic REV, like deposition and clogging, two-
phase seepage flow and concentrated flow, dissolution and physico-chemical effects. 
For a better description of a realistic media, we intend to develop several numerical 
improvements such as implementing a parallel solver on unstructured grids. 
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