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Abstract
We study a problem of structural optimization using the �ctitious

material approach. This is connected with the equilibrium of locking
materials, which can be approximated by strongly non linear materials. A
�nite element simulation allows us to experiment some conjectures about
the topology of the optimal solutions.

keywords: shape optimization, locking material, topological optimization, �c-
titious material, �nite elements.

1 Introduction
Structural optimization is a major objective in the conception of industrial sys-
tems. In particular, for a given desired performance, engineers may need to
minimize the mass of a structure by using an adapted geometry. Early methods
consist of progressively tuning some geometric parameters of a postulated initial
shape. The optimal design obtained in this way depends strongly on the initial
one: the optimization process cannot change the fundamental topological char-
acteristics of the shape. Methods which allow such modi�cations (Allaire et al.,
1997), (Bendsoe, 1995) are called topological optimization. Here we consider
a structure submitted to a given load and we try to get a structure with the
smallest volume for a desired compliance (i.e. global sti�ness, or stored elastic
energy for the given load). It is now well known that this problem may admit
no solution in the classical sense: the optimal "shape" may consist of an intri-
cate mixture of material and holes. The optimal solution has to be understood
in the framework of homogenization theory and the optimization problem has
to be set at the very beginning in a relaxed form. However, as the set of all
possible e�ective sti�ness tensors for a given volume fraction of the material is
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rather intricate (Allaire and Kohn, 1993), (Aubry, 1999), (Bendsoe, 1995), it
seems di�cult to �nd analytic solutions or mathematical properties for optimal
designs. That is why we consider a very similar but much simpler problem: we
assume that the sti�ness tensor depends linearly on the volume fraction (or the
mass density) of the material. In 3-D this assumption is not realistic as the
sti�ness of a composite material with a given volume fraction is weaker than
the sti�ness obtained assuming a linear dependence: the problem we consider is
then called "�ctitious material optimization". In 2-D, the problem corresponds
to the optimization of the thickness of a plate submitted to a plane load (plane
stress).This linear dependence or di�erent arti�cial mixture rules are discussed
in (Duysinx,1996).

The optimal designs obtained using homogenization theory or the �ctitious
approach are qualitatively similar. Hopefully our results could then be extended
to the optimal structures obtained by the homogenization method.

We show that the problem of �ctitious material optimization is equivalent
to the equilibrium problem of a perfect locking material (i.e. a material whose
strain tensor must belong to a given bounded set, in that case its internal en-
ergy density vanishes). This convex minimization enables us to give non-trivial
analytical solutions (section 4.1). Its regularization leads to a simple non-linear
elasticity problem (section 3). Some 2−D numerical solutions are presented
(section 5) and compared to analytical solutions. The numerical solutions en-
able us to test some conjectures about the topology of optimal solutions. In the
case when the support of the optimal design is a connected set, it seems that
this support is a simply-connected bounded set. In particular, we can prove
that circular holes cannot be present in an optimal design.

This conjecture, if con�rmed, is remarkable: the topological complexity is
not introduced by the optimization process, but only by a later penalization pro-
cess (such a penalization is generally used to get out of the relaxed formulation
and to obtain a classical solution (Allaire et al., 1997). Only this penalization
process justi�es the name of �topological optimization" for the whole process.

2 Optimal design of membranes
2.1 Mathematical formulation
Let us consider a thin plane membrane of variable thickness h(x), x belonging
to some bounded domain Ω ⊂ IR2. Its volume V is then given by

V =
∫

Ω

h(x) ds (1)

Assuming that the membrane is made of an homogeneous isotropic elastic mate-
rial with Young's modulus E and Poisson coe�cient ν, its elastic energy under
plane stress conditions is

∫

Ω

1
2

εv(x) : D : εv(x)h(x) ds (2)
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where v ∈ H1(Ω, IR2) denotes the displacement �eld of the membrane, εv, the
plane strain tensor εv = 1

2 (∇v +∇tv) and D is the two-dimensional fourth-
order sti�ness tensor:

Dijkl =
Eν

1− ν2
δijδkl +

E

1 + ν
δikδjl

At equilibrium the displacement �eld u minimizes the potential energy

J(v, h) =
∫

Ω

1
2
εv : D : εv h ds−

∫

L
F · v d` (3)

where F denotes a line density of applied forces along a line L. Other types
of measures could be considered for F , but, for the sake of simplicity, this will
not be done here. For equilibrium to be possible, we assume that the resulting
force and moment vanish (

∫
L Fd` =

∫
L x ∧ Fd` = 0). Such conditions could be

replaced by Dirichlet conditions for the displacement on some part of Ω.
The elastic energy at equilibrium can be rewritten, in terms of the equilibrium
displacement �eld u,

E(h) = − inf
v

J(v, h) = −J(u, h) =
∫

Ω

1
2
εu : D : εu h ds =

1
2

∫

L
F · u d` (4)

Assume that we need to maximize the global sti�ness of the structure (or
which is equivalent, to minimize the volume of the structure) for the given single
loading F . An optimal design of the membrane is a function h(x) which, for
a given volume V, minimizes the equilibrium elastic energy. The optimization
problem reads

E = inf
h

{
E(h); h(x) ≥ 0;

∫

Ω

h(x) ds = V
}

(5)

or, using (3) and (4)

E = − sup
h

inf
v

{∫

Ω

1
2
εv : D : εv h ds−

∫

L
F · v d`; h ≥ 0;

∫

Ω

h ds = V
}

(6)

Let us remark that, even in this relaxed formulation, the existence of an
optimal design (a function h minimizing (6)) is generally not assured. For some
special loading F the optimal solution may concentrate along a line: indeed,
as proved in (Bouchitté and Buttazzo, 2001), the optimal solution h has to
be sought in the space of measures. Examples of this phenomenon are given
in (Bouchitté et al., 1997a) for conductivity optimization and can easily be
extended to our problem. In this paper we assume that forces are such that h
and the associated displacement �eld u exist and are su�ciently regular.

Note that the line L, where external forces are applied, may be di�erent from
the boundary ∂Ω of Ω and may not even coincide with a part of the boundary.
This allows us to consider the case Ω = IR2 or, in numerical studies, to consider
a domain much larger than the support of applied forces. Then we can obtain
optimal structures which are not subjected to any geometrical constraint.
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2.2 Perfect locking materials
We show now that the problem (6) is equivalent to the resolution of the equi-
librium of a perfect locking material. We search, a priori, the supremum in (6)
in the convex compact set M of all non-negative measures h on Ω̄ which verify∫

h = V. By a density argument, the in�mum can be sought in C∞(Ω̄), so (6)
can be rewritten:

E = inf
h∈M

sup
v∈C∞(Ω̄)

{−J(v, h)} (7)

As, on C∞(Ω̄)×M, −J is concave with respect to the �rst variable and convex
(linear) lower semicontinuous with respect to the second one, the lop sided
minimax theorem (cf. chapter 6 of (Aubin and Ekeland, 1984)) allows us to
interchange inf and sup in (7):

E = sup
v∈C∞(Ω̄)

inf
h∈M

{−J(v, h)} = − inf
v∈C∞(Ω̄)

sup
h∈M

J(v, h) . (8)

This last supremum in h is easy to compute (it is enough to concentrate h where
‖εv : D : εv‖∞ reaches its maximum), and we get

E = − inf
v∈C∞(Ω̄)



−

∫

L

F · v d` + ‖εv : D : εv‖∞
V
2



 . (9)

In order to get rid of the in�uence of the total volume V, we can consider,
for each v ∈ C∞(Ω̄), the quantities s = ‖εv : D : εv‖

1
2∞ and w = s−1v and write

(9) as

E = − inf
w∈C∞(Ω̄),s≥0



−s

∫

L

F · w d` +
Vs2

2
, ‖εv : D : εv‖∞ = 1



 . (10)

As the minimization in s is straightforward, we obtain

E = − 1
2V


inf

w





∫

L

−F · w d`; ‖εw : D : εw‖∞ = 1;








2

(11)

or, in an equivalent way,

E = − 1
2V


inf

w





∫

L

−F · w d`; ‖εw : D : εw‖∞ ≤ 1;








2

(12)

In this last formulation, the minimization problem corresponds to the equi-
librium of a perfect locking material (Demengel and Suquet, 1986): the strain
tensor of such a material has to satisfy the constraint ‖εw : D : εw‖∞ ≤ 1, then
its volume energy vanishes.
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These results hold also in the more general case when the elastic material
is a non-linear one. This has been proved by G.Bouchitté and G. Buttazzo
(Bouchitté and Buttazzo, 2001).

Note that formulation (12) can be obtained by using the stress based for-
mulation of (Allaire and Kohn, 1993). In our simpler case the set of all sti�ness
tensors for a given thickness h, is reduced to the singleton hD. Then, the vari-
ational problem (2.16) of (Allaire and Kohn, 1993) is easily explicited: in our
case this problem becomes convex and corresponds to the dual formulation of
(12).

A similar formulation has already been used to study optimal truss struc-
tures (Michell, 1904), (Lagache, 1981), (Rozvany, 1989). Indeed, problems (P2)
or (P3) in (Lagache, 1981) clearly correspond to the equilibrium of a perfect
locking material. In the case of optimal trusses, the strain tensor has to verify
the constraint |||εw||| ≤ 1 (where |||ε||| denotes the highest singular value of ε)
while in our case the constraint is ‖εw : D : εw‖∞ ≤ 1. The locking material
formulation for optimal trusses has been particularly fruitful and optimal solu-
tions can be described in terms of Hencky nets (Strang and Kohn, 1983). Here
we investigate how the results obtained for optimal trusses can be extended to
the problem (12). We cannot obtain a simple structure like Hencky nets, nev-
ertheless the formulation (12) enables us to get some analytical solutions and
some topological properties of optimal designs.

Formulation (9) has already been used in �nite dimension by (Ben-Tal and
Bendsoe, 1993) for the numerical analysis of optimal trusses and by (Zowe and
al., 1997) for the �nite element study of �ctitious material. We will �rst regu-
larize our convex minimization problems before discretizing them.

3 Numerical formulation
3.1 Problem regularization
In order to solve numerically (9) or (12), let us regularize the term containing
the norm ‖ · ‖∞.

In the �rst formulation, we approximate the in�nity norm by a p-norm where
p is a large parameter. Indeed

‖εv : D : εv‖∞ = lim
p→∞

‖εv : D : εv‖p = lim
p→∞




∫

Ω

(εv : D : εv)p
ds




1
p

. (13)

Then we deal with the following optimization problem:

lim
p→∞

(
inf
v

Jp(v)
)

, (14)

where

Jp(v) := V
(∫

Ω

(εv : D : εv)pds

) 1
p

− 2
∫

L
F · v d`. (15)
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As the derivative of Jp is given by

J ′p(u) · v = V
(∫

Ω

(εu : D : εu)pds

) 1
p−1(∫

Ω

2(εu : D : εu)p−1(εu : D : εv) ds

)

−2
∫

L
F · v d` ,

the variational formulation of the optimization problem becomes
∫

Ω

H(u) εu : D : εv ds =
∫

L
F · v d` (16)

where

H(u) := V (εu : D : εu)p−1

(∫

Ω

(εu : D : εu)pds

) 1
p−1

(17)

This variational formulation corresponds to a non-local elastic problem. Indeed
the sti�ness tensor H D, through H depends on the solution u on the whole
domain.

For a given H, this formulation corresponds again to the equilibrium of an
elastic plate of thickness H under plane stress. The comparison of (17) and (4)
shows that H corresponds to the optimal design h we are looking for. Here H
depends on the global strain energy.

In the second formulation (12), introducing the indicator function de�ned
on IR+ by

I(t) :=

{
∞ if t > 1
0 otherwise

(18)

the optimization problem becomes:

inf
w

{
−

∫

L
F · w d` +

∫

Ω

I(εw : D : εw) ds

}
. (19)

Let us now approximate the indicator function I by the function Ip de�ned
by Ip(t) := (2p)−1tp, p being a large parameter. The minimization problem
becomes

lim
p→∞

(
inf
w

J̃p(w)
)

, (20)

where
J̃p(w) :=

∫

Ω

1
2p

(εw : D : εw)pds−
∫

L
F · w d` . (21)

As the derivative of J̃p is given by

J̃ ′p(u) · v =
(∫

Ω

(εu : D : εu)p−1(εu : D : εv) ds

)
−

∫

L
F · v d` , (22)

the variational formulation of the optimization problem is written again
∫

Ω

H̃(u) εu : D : εv ds =
∫

L
F · v d` (23)
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where
H̃(u) := (εu : D : εu)p−1 (24)

This variational formulation corresponds to a simple local elastic problem. Again
the comparison of (23) and (4) shows that H̃ corresponds to the optimal design
h we are looking for. Here H̃ depends simply on the local strain energy density.
Note that the problems (16)-(17) and (23)-(24) are equivalent up to a multi-
plicative constant. They are both non linear, but convex, elastic equilibrium
problems. They lead to the same optimal design.

Similar formulations have been established by (Ben-Tal and Bendsoe, 1993)
for the study of optimal trusses or by (Petersson, 1999) for the study (very
closely connected to ours) of optimal variable thickness sheets.

3.2 Finite element formulation
We use a �nite element formulation (Batoz and Dhatt, 1995) for our problems.
Let us denote {u} the vector of the nodal unknowns and, for each element e,
Ne the interpolation functions. Then the displacement �eld is approximated on
e by

u(x) = [Ne(x)]{u} ,

which, by di�erentiation, de�nes Be such that

εu(x) = [Be(x)]{u} .

Then we write on each element e

εu : D : εv = {u}T [Be]T [D][Be]{v} = {u}T [Ke]{v}
Here [Ke] := [Be]T [D][Be] is the elementary elastic sti�ness matrix. Decom-
posing the domain Ω with the supports V e of the �nite element and denoting

Ep :=
∫

Ω

(εu : D : εu)p
ds =

∑
e

∫

V e

({u}T [Ke]{u})p
ds ,

the �nite element formulation of (16) is written as

VE
1
p−1
p

∑
e

∫

V e

({u}T [Ke]{u})p−1{v}T [Ke]{u} ds =
∑

e

∫

∂V e

{v}T [Ne]{F}d`.

As this equality holds for any {v}, the residue

{Rp}({u}) := −
∑

e

∫

∂V e

[Ne]{F}d` + V
(∑

e

∫

V e

({u}T [Ke]{u})p
ds

) 1
p−1

×
∑

e

∫

V e

({u}T [Ke]{u})p−1
[Ke]{u}ds (25)

must vanish.
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In the same way the residue of the �nite element formulation of (23) becomes

{R̃p}({u}) :=
∑

e

∫

V e

({u}T [Ke]{u})p−1
[Ke]{u}ds

−
∑

e

∫

∂V e

[Ne]{F}d` (26)

3.3 Computational method
As, for a given value of p 6= 1, the problems

{Rp}({u}) = {0}, (27)
{R̃p}({u}) = {0}, (28)

are non linear, we use the Newton-Raphson method. At each iteration j we
solve the following linear system:





[
∂{R}
∂{u}

]
({uj−1}){δu} = −{R}({uj−1]})

{uj} = {δu}+ {uj−1}
(29)

For p = 1 the problem is linear. Increasing progressively p, we initialize the
Newton-Raphson algorithm by choosing for {u0} the displacement �eld com-
puted with a smaller value of p.

The di�erentiation of formula (28) leads to the following tangent matrix:
[

∂{R̃p}
∂{u}

]
=

∑
e

∫

V e

({u}T [Ke]{u})p−1
[Ke] ds

+2(p− 1)
∑

e

∫

V e

({u}T [Ke]{u})p−2
[Ke]{u}([Ke]{u})T ds (30)

which we can use directly while the di�erentiation of formula (27) leads a full
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tangent matrix:

[
∂{Rp}
∂{u}

]
=V

(∑
e

∫

V e

({u}T [Ke]{u})p
ds

) 1
p−1∑

e

∫

V e

({u}T [Ke]{u})p−1
[Ke] ds

+2(p− 1)V
(∑

e

∫

V e

({u}T [Ke]{u})p
ds

) 1
p−1

×
∑

e

∫

V e

({u}T [Ke]{u})p−2
[Ke]{u}([Ke]{u})T ds (31)

+2(1− p)V
(∑

e

∫

V e

({u}T [Ke]{u})p
ds

) 1
p−2

×
(∑

e

∫

V e

({u}T [Ke]{u})p−1
[Ke]{u} ds

)(∑
e

∫

V e

({u}T [Ke]{u})p−1
[Ke]{u} ds

)T

As using such a full tangent matrix is numerically expensive, it is better to
replace it by a truncated one, neglecting the last term in (31). We have tested
both methods. Their performances are similar.

4 Comparison with an analytical solution
4.1 An analytical optimal design
In order to test our numerical procedure, we construct in this section a non-
trivial analytical solution: we consider the case of an elastic material with a
vanishing Poisson's coe�cient. Then Dijk` = 2µδikδj` and the constraint for
the displacement �eld u takes the simple form

εu : D : εu = 2 µ εu : εu ≤ 1 . (32)

Using adapted units, we consider 2µ = 1. Then, in the support of the optimal
design {x, h(x) > 0} where the constraint is active (the inequality is actually an
equality), the strain tensor has to verify

ε2
11 + ε2

22 + 2ε2
12 = 1 . (33)

where εij denote the components of εu in an orthogonal basis (x1, x2).
On the other hand, as εu is a symmetric part of a gradient, it has to verify

the compatibility condition

∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

− 2
∂2ε12

∂x1∂x2
= 0 . (34)

Finally, u must correspond to the equilibrium displacement �eld of the op-
timal design. In a domain free from external forces, this condition states that
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there exists a scalar �eld h(x) such that div(hεu) = 0, i.e.

hdiv(εu) + grad(h) · εu = 0

or
div(εu) + grad(ln(h)) · εu = 0 . (35)

The existence of such �eld h is assured, when εu is invertible, if εu satis�es

rot(ε−1
u · div(εu)) = 0 (36)

It is di�cult to describe the general properties of the solutions of equations
(33),(34) and (36), but it is easy to �nd particular non-trivial solutions.
Example 1) Let us determine, for instance, a solution εu diagonal in the carte-
sian coordinate system (x1, x2), i.e. such that ε12(x) = 0 everywhere. Then
equations (33),(34) and (36) become:

ε2
11 + ε2

22 = 1 ,
∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

= 0 ,
∂2

∂x1∂x2

(
ln(

ε22

ε11
)
)

= 0 . (37)

a solution of which is:

ε11 = −
(

1 +
(

x2

x1

)4
)− 1

2

, ε22 = −
(

1 +
(

x1

x2

)4
)− 1

2

. (38)

The thickness h of the optimal plate is then given, up to a multiplicative
constant, by equation (35). We have

h(x) = γ

√
x−4

1 + x−4
2 (39)

Let us assume now that the plate is contained in the square Ω := [a, b]2 with
0 < a < b. It is easy to determine the external density of forces F which are
applied on the boundary of the domain. Indeed the equilibrium condition reads
F = h εu ·n, where n denotes the external normal to the boundary ∂Ω of Ω. For
the considered domain F is parallel to n: F = −p n and the plate is subjected
to the non-constant pressure �eld p:

p(x) = x−2
2 along the vertical edges {a} × [a, b] and {b} × [a, b]

p(x) = x−2
1 along the horizontal edges [a, b]× {a} and [a, b]× {b} (40)

The design given by (39) is the optimal design of a plate contained in the
square Ω and subjected to the pressure �eld given by (40), the multiplicative
constant γ being determined by the volume constraint. The associated strain
�eld is given by (38).
Example 2) It is also possible to obtain solutions with cylindrical symmetry by
assuming that the strain tensor is diagonal in the natural basis (er, eθ) associated
with the polar coordinates (r, θ). Such solutions (for which εrθ = 0) correspond
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to more realistic loads than (40). Their computation is more intricate than in
the previous example and we only give the results. The parametric description
of the optimal designs has the form

r = ae
t
2 | cos(t)− sin(t)| 12

h = be−t(cos(t))−1 (41)

where the constants a and b are determined by the loading. Indeed, if we
consider the annulus {r1 < r < r2} subjected to an internal constant pressure
p1 and an external constant pressure p2, the quantity

p := hεrr = be−t (42)

coincides with p1 and p2 for r = r1 and r = r2 respectively. This enables us
to determine the constants a and b and the values t1 and t2 of the parameter t
which correspond to r = r1 and r = r2. It is remarkable that this determination
is only possible if the ratio p2/p1 does not exceed critical values (p2/p1 ∈ [k1, k2])
which depend on the geometrical parameter r2/r1 (for instance, when r2/r1 is
very large, [k1, k2] ' [0.1, 2.2]). Outside of this interval, the optimal design is
not entirely made of a regular 2-D plate: part of the mass concentrates along
the circle {r = r1}.

4.2 Numerical confrontation
In order to validate the numerical procedure presented in section 3, we compare
its results with the analytical solutions. Let us consider the square domain
Ω := [a, b]2 submitted to the boundary forces described by (40) (see �g. 1).
Then the optimal design is a plate the thickness of which is given by (39).

Figure 1: Boundary conditions for the numerical test.

We compute the �nite element solution for increasing values of the parameter
p. Generally we use the increment 2 for p. We stop at the maximum value before
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the Newton's method diverges. In order to check the numerical scheme, we study
three di�erent regular �nite element grids with quadratic interpolation (20x20,
40x40, 80x80).

Analyzing the relative di�erence between the numerical and analytical so-
lutions at every point of the domain (cf. �gure 2a), we �nd that it is lower
than 1%. We can conclude that the numerical scheme presented here is e�cient
for solving the problem (12). The scheme's convergence is the same in both
formulations (27) or (28). For a given value of p, we initialize the Newton's
scheme by the solution obtained previously for a smaller value of p. Beginning
with the value p = 1 (which corresponds to a linear elastic problem) assures the
convergence of the scheme. Many iterations (about 20) are needed to cross the
�rst non-linearity (p = 3). Afterward, for p > 3, the convergence is obtained
within �ve iterations.

Analyzing the L2-norm of the di�erence between the numerical and analyt-
ical solutions, we observe a good agreement, which improves as p increases (cf.
�g. 2b). Even when p is small (about 10), the design obtained is close to the
exact solution: it is pertinent to compute �rst a solution on a large mesh for
a rough design, then to re�ne the mesh in order to obtain the best precision.
Indeed, the mesh quality governs the precision and the maximal value of the
parameter p we can reach.

We have also considered the annulus {r1 < r < r2} subjected to the pressures
given by (42) (when their ratio does not exceed the critical values). Again we
get a very good agreement with the analytical solution (41).
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Figure 2: Di�erence between analytical and numerical solutions.
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5 Topology of optimal solutions
The goal of topological optimization is to obtain structures, the topology of
which has not been postulated a priori.

Figure 3: Optimal designs for some systems of three forces.

What can we say about the topology of the optimal design obtained using
a �ctitious material approach? Essentially, we are limited to conjectures: �rst,
it seems reasonable and our numerical results show that the support of the
structure (the location of non vanishing thickness) is bounded. We explored
every equilibrium system of three point forces (cf. �g. 3). These numerical
experiments have been computed with the same relatively rough mesh and a
moderate value of p (p = 10): the design is not quite precise but qualitatively
pertinent. The gray scale used in the �gure corresponds to the thickness of the
plate. The domain in which the optimal design has been sought for is much
larger than the support of the obtained designs. Thus, these designs are not
limited by any geometrical constraint. As a matter of fact, the optimal design
seems to be included in a disk containing the support of the forces. Here circles
seem to play a central role for a still unknown reason. See �gure 4 in which
we consider a system of vertical forces applied at three points of an horizontal
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line: the optimal design is a disk with variable thickness. This �gure can be
compared to �gure 2.7 p.106 of (Bendsoe, 1995) in which, in a di�erent context
and under geometrical constraints, circles also appear.

Figure 4: optimal design for a particular system of three forces.

Secondly, if connected, the structure seems to be simply connected. The
restriction to connected structures is essential as many examples can be found
of non connected optimal structures. On the other hand, this conjecture does
not hold when the design domain is subjected to some geometrical constraint.
For instance, we consider in �gure 5 the case of three symmetrical forces acting
on the wedges of an equilateral triangle. The thickness of the optimal design is
small at the center of the structure but does not vanish (�gure 6 represents the
thickness of the design along one of its axis of symmetry obtained for di�erent
values of the parameter p). This fact is numerically clear: we veri�ed that this
minimal thickness converges to a positive value when re�ning the mesh and
increasing the parameter p. Moreover this phenomenon is not an artefact of our
regularization procedure: indeed, the previous comparison between numerical
and analytical solutions has showed that the numerical solutions are su�ciently
accurate. Finally, we notice that, outside of the optimal design, the numerical
solutions tend to zero without any ambiguity.

We explored di�erent values for the Poisson coe�cient: the optimal design
depends slightly on this coe�cient, but there is not any qualitative di�erence.
Note that the triangle made by three elastic 2-D bars (or any other equivalent
truss structure) which is an optimal design for the Michell criterium cannot be
optimal for our minimization problem. Indeed, the optimal design we obtain
has a smaller compliance. This fact has been rigorously proved in (Bouchitté
and Buttazzo, 2001).

We conjecture that the structure is simply connected. Up to now, we can
only prove that there is no circular hole in the optimal structure: if (h, u) is a
regular solution of problem (12) in a domain Ω containing the disk B(0, R), then
it is not possible for h to vanish inside a disk B of radius R0 and to be positive
in its vicinity (for all x in {x,R0 < ‖x‖ < R1 ≤ R}). Indeed, as the �eld εu is
assumed to be regular, it veri�es the equilibrium condition div(hεu) = 0 in the
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Figure 5: Optimal design for the system of three symmetrical forces.
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Figure 6: Thickness along the axis of symmetry.

whole disk B(0, R1) and, at each point of the boundary ∂B of B, we have

εu · n = 0.

n denoting the external normal of ∂B.
The optimality condition, ‖εu‖2 = 1 where h > 0, yields to

τ · εu · τ = 1 on ∂B (43)

(τ denoting a unit vector tangent to ∂B) and

‖εu‖2 ≤ 1 in B (44)

To prove that there is no �eld u in B verifying these two conditions, let us
consider the following minimization problem:

inf
{∫

B

‖εu(x)‖2 dx, u ∈M
}

(45)
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whereM denotes the space of those functions of the usual Sobolev space H1(B)
such that u|∂B ∈ H1(∂B) and τ · εu · τ = 1 on ∂B. This is a linear elastic
equilibrium problem. The boundary condition is not usual but it has been
proved in (Bouchitté et al., 1997b) that this minimization problem is well-posed.
Therefore, there exists a unique solution u0 which, due to the symmetry of B,
is radial. Then, it is easy to verify that u0(x) = x and the in�mum of (45) is∫

B
2dx. The mean value of ‖εu‖2 is larger or equal to 2 for every u in M: no

element of M can verify condition (44).

6 Final remarks
In this study we put forward how shape optimization and locking materials are
closely linked. First, this enables us to have mechanic intuition of optimal de-
signs, but overall this leads to a classical numerical approach. We only have to
search for the equilibrium con�guration of a strongly non-linear elastic medium.
The optimization problem we considered is very particular. Many practical ap-
plications need a more sophisticated model: one should replaced the �ctitious
energy (2) by an energy resulting from homogenization theory; one should op-
timize the sti�ness under multiple loads; one should consider materials with
di�erent behaviors; one should discuss the case of mass concentration along do-
mains of lower dimension. All these variants lead to signi�cant di�culties. Our
problem is pertinent for optimization of 2-D structures, it put forward some
central questions and enables us to test some conjectures. Our numerical ex-
periments show that, as expected, the optimal structures are bounded. To our
knowledge, this quite intuitive fact is not proved even for the Michell optimiza-
tion criterium. Our experiments show also, as less expected, that the optimal
structure is simply connected. This makes a fundamental di�erence between
Michell trusses and �ctitious optimal designs. Before a penalization step, opti-
mal designs obtained through homogenization seem to present the same feature
(compare �gures 1 and 2 or 6 and 7 in (Allaire et al., 1997) and �gures 2.17 and
2.21 in (Rossi, 1996)).
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