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In this work, we present a fast and parallel finite volume scheme on unstructured meshes applied to complex fluid flow.
The mathematical model is based on a three-dimensional compressible low Mach two-phase flows model, combined with
a linearised ‘artificial pressure’ law. This hyperbolic system of conservation laws allows an explicit scheme, improved
by a block-based adaptive mesh refinement scheme. Following a previous one-dimensional work, the useful numerical
density of entropy production is used as mesh refinement criterion. Moreover, the computational time is preserved using a
local time-stepping method. Finally, we show through several test cases the efficiency of the present scheme on two- and
three-dimensional dam-break problems over an obstacle.

Keywords: low Mach model; dam-break problem; two-phase flow; artificial compressibility; finite volume; block-based
mesh refinement; entropy production; local time stepping

1. Introduction

The understanding of wave hydrodynamics is of primary
interest for countless ocean and naval engineering appli-
cations: dynamics of ships and floating structures, stabil-
ity of offshore structures, mass, momentum and energy
fluxes between ocean and atmosphere, coastal erosion and
submersion processes, etc. Despite significant progress in
numerical, experimental and theoretical works during the
last decades, the wave dynamics remains a fairly open re-
search field. Many difficulties arise when trying to describe
the violent transformations observed during wave break-
ing and/or impact on rigid structures. The involved phys-
ical processes, such as splash-ups or gas pockets entrap-
ment, are quite complex and can hardly be characterised by
field or laboratory experiments or analytical approaches.
Boosted by the continuous improvement of computer tech-
nology, the computational fluid dynamics simulations are
expected to provide a unique insight, in terms of spatio-
temporal resolution and controlled conditions, into such
wave dynamics. Therefore, the numerical simulation of
breaking and impacting waves is both an attractive research
topic and a challenging task for coastal and environmental
engineering.

The most comprehensive numerical approach, in terms
of physical relevancy, would be the solving of the full
set of Navier–Stokes (NS) equations for both air and
water phases down to the Kolmogorov dissipation scale,
together with non-linear dynamic and kinematic free

∗
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surface boundary conditions and other boundary condi-
tions to represent solid surfaces or open boundaries. Such
an ambition is still out of reach for now in terms of com-
puting power. Consequently, most of the studies based
on the NS equations are generally performed in the two-
dimensional case (see e.g. Hsu, Hsieh, and Hwang 2004;
Hsiao and Lin 2010). Even if impressive results have been
recently obtained using finite volume scheme (Lubin and
Glockner 2013), Lattice-Boltzmann model (Banari et al.
2014), finite element model (Coupez and Hachem 2013;
Hachem et al. 2013) or smoothed particle hydrodynam-
ics model (Altomare et al. 2014), three-dimensional sim-
ulations still demand a significant effort in software de-
velopment and mesh refinement technique with the use
of powerful computers (see e.g. Kleefsman et al. 2005;
Fuster et al. 2009; Abadie et al. 2010; Vincent et al. 2010).
Turbulence models are often included in NS wave models
whereas, despite of its importance in wave breaking and im-
pact problems, the behaviour of the air-water micro-bubbles
mixture is hardly taken into account (Plumerault et al.
2011).

Due to their much smaller requirements in cpu-time,
simplified models based on potential theory or shallow wa-
ter equations are also widely used in research and engineer-
ing applications (see e.g. Grilli, Guyenne, and Dias 2001;
Dutykh, Poncet, and Dias 2011; Shi et al. 2012). Unfortu-
nately, these models are not able to accurately describe the
powerful rotational two-phase processes occurring during

C© 2015 Taylor & Francis
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wave breaking or impact, such as splash-up, overturning
and free surface reconnection.

The overall objective of our research work is to propose
an ‘intermediate’ three-dimensional model aiming, on one
hand, to be physically relevant in the context of highly dy-
namical and aerated flows associated with breaking and
impacting waves and, on the other hand, to be less cpu-time
consuming than the full three-dimensional NS equations.
The presented model has been designed and continuously
improved to this end (Helluy et al. 2005; Golay and Helluy
2007; Sambe et al. 2011), keeping in mind that an accurate
capture of interface dynamics is a key issue for simulating
wave transformation near breaking and after impacting. The
assumption is made that, at least for the early stages, the
physics of impacting flows is dominated by pressure forces
and large-scale overturning motions rather than small-scale
friction and dissipation processes. Viscous effects are thus
neglected and the two-phase flows model can be based on
the compressible Euler equations. An artificial linearised
pressure law is used to compute low Mach flows (see for
instance Chorin 1967) with a preconditioned physical pres-
sure coefficient avoiding too constraining CFL (Courant–
Friedrichs–Lewy) conditions. The obtained system is hy-
perbolic and, under some assumptions, the Riemann prob-
lem is well posed and can be solved using explicit parallel
Godunov finite volume solver (as described in Golay and
Helluy 2007). The physical relevancy of this compress-
ible two-phase flow model has been successively tested on
experimental and numerical test cases (Helluy et al. 2005),
improved by the use of an isothermal model (Golay and Hel-
luy 2007) and recently validated on breaking wave problem
over a non-flat bottom with and without macro-roughness
(Sambe et al. 2011).

The purpose of this paper is to present the implemen-
tation and to test the efficiency of a new block-based adap-
tive mesh refinement (BB-AMR) combined with an effi-
cient parallel algorithm. Moreover, based on recent de-
velopments in one-dimensional case (Ersoy, Golay, and
Yushchenko 2013), the use of the numerical density of
entropy production as mesh refinement criterion is ex-
tended to our three-dimensional model. Following Ersoy,
Golay, and Yushchenko (2013), the time-step constrain im-
posed by the mesh refinement is outweighed by the imple-
mentation of a local time-stepping method together with
first- and second-order Adams–Bashforth time integration
schemes.

The first section of the paper is dedicated to the pre-
sentation of the model governing equations (Section 2.1)
and the finite volume approximation (Section 2.2). A par-
ticular attention is paid on the new BB-AMR scheme and
the related adaptation of the space grid using the numerical
density of entropy production. Combining both adaptive
mesh refinement and local time-stepping, we construct a
three-dimensional parallel solver on unstructured meshes.
The model confrontation with experiments in both two-
dimensional and three-dimensional dam-break problems is

presented in Section 3. Finally, concluding remarks and
prospects are given in Section 4.

2. The mathematical and the numerical multi-fluid
model

The hydrodynamics of breaking and impacting waves is
extremely complex. As exposed in the introductory sec-
tion, the most relevant approach would be to solve the full
set of NS equations. Applied to three-dimensional cases
and accounting for the time and space scales required by
turbulence description, such computation is virtually inac-
cessible. The definition of a simplified mathematical and
numerical model able to properly describe the physics of
breaking and impacting waves at a decent cpu-time cost is
a challenging problem which is the core of our research
work. The purpose of this section is to briefly present the
mathematical model with governing equations and finite
volume approximation already described and validated in
Helluy et al. (2005), Golay and Helluy (2007) and Sambe
et al. (2011), and to detail the implementation of both the
time integration and the three-dimensional extension of the
adaptive multi-scale scheme introduced in Ersoy, Golay,
and Yushchenko (2013) on unstructured meshed using a
new BB-AMR.

2.1. Governing equation

We consider a compressible two-fluids flows problem in
three space dimension. Viscosity, surface tension and heat
conduction are neglected. The incompressibility condition
is relaxed using a low Mach approach in order to lead to
hyperbolic system of conservation laws. Thus, based on
Golay and Helluy (2007), the following three-dimensional
isothermal hyperbolic and compressible Euler equations
system is applied to a mixture fluid of air and water:⎧⎪⎨

⎪⎩
∂ρ

∂t
+ ∇ · (ρu) = 0

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u) + ∇p = ρg

(1)

where the unknowns depend on spatial coordinates (x, y, z)
and time t . The unknowns are the density ρ, the three com-
ponents of the velocity u = (u, v,w), the pressure p. Here,
g stands for gravitational acceleration.

Air and water fractions within the mixture are defined
by the volume fraction function ϕ ∈ [0, 1] (ϕ = 0 in the
water, and ϕ = 1 in the air). With this definition of ϕ, the
pressure of the two-phase flow problem is a function of the
density ρ and the volume fraction ϕ, where ϕ solves the
following non-conservative transport equation:

∂ϕ

∂t
+ u · ∇ϕ = 0 . (2)

It is usually admitted that a flow is incompressible
if the Mach number M = ‖u‖ /c is lower than 0.1 (c is
the sound speed), keeping in mind that the real (physical)
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Mach number is generally much smaller (of the order of
1/400 ∼ 1/1600). In particular, this is constraining for ex-
plicit finite volume solver in which the time step �t needs
to satisfy a CFL condition. Also note that the numerical
scheme efficiency is expected to decrease with the Mach
number. Therefore, an artificial pressure law (isothermal
equation of state) is used to close the system:

p = c2
0(ρ − (ϕρA + (1 − ϕ)ρW )) + p0. (3)

In this expression, ρA and ρW stand for air and water den-
sities, respectively, c0 is the artificial sound speed (defined
below) and p0 a reference pressure. For further details about
the EOS choice, the reader is referred to Golay and Helluy
(2007). The value of c0 is chosen as a compromise between
the limits of compressible effects, the rate of numerical dif-
fusion and a reasonable CFL constraint. The optimal choice
for the artificial sound speed is still an open problem and
would require a large amount of comparative test cases in
a wide range of hydrodynamical conditions. In the present
context, i.e. for flow velocity of the order of 1 m/s, an op-
timised value c0 = 20 m/s is used. Further improvements
such as variable artificial sound speed can be considered.
Finally, it is emphasised that in the boundary mixture re-
gion 0 < ϕ < 1 related to numerical diffusion processes,
the proposed pressure law has no physical meanings.

For the ease of reference, Equation (1) are written into
a more compact form:

∂w(t)

∂t
+ ∇ · f (t,w) = G (4)

where w, f , G stands respectively for conservative vari-
ables, flux and source:

w =
(

ρ

ρu

)
, f =

(
ρu

ρu ⊗ u + pI

)
G =

(
0

ρg

)
.

Here I stands for the 3 × 3 identity matrix.

2.2. Finite volume approximation

In this section, we recall the well-known semi-discrete fi-
nite volume approximation of Equation (4). The system is
solved in R

3 and the source term is omitted for the sake of
simplicity. The computational domain � ⊂ R

3 is split into
a set of control volumes, also referred as cells, � = ∪kCk .
We start by integrating Equation (4), by means of Green
formula, on a cell Ck:

∫
Ck

∂w(t)

∂t
+

∑
a

∫
∂Ck/a

f (t,w) · nk/a = 0, (5)

where nk/a denotes the unit normal vector on the boundary
∂Ck/a . Then, setting

wk(t) ≈ 1

|Ck|
∫

Ck

w(x, t) d�

where |Ck| stands for the volume of the cell Ck , we approx-
imate (5) by

∂wk(t)

∂t
+

∑
a

F
(
wk(t),wa(t); nk/a

) = 0, (6)

where the numerical flux

F
(
wk(t),wa(t); nk/a

) ≈ 1

|Ck/a|
∫

∂Ck/a

f (t,w) · nk/ads

is defined by the Godunov solver. More precisely, the nu-
merical flux F

(
wk(t),wa(t); nk/a

)
, noted for the sake of

simplicity Fk/a(t), is computed with the exact solution of
the Riemann problem at the interface k/a (for further de-
tails, see for instance, Toro (1999) or Golay and Helluy
(2007)). Pressure oscillations observed in the multi-fluid
case are avoided using Abgrall’s method (Abgrall 1996)
leading to a non-conservative discretisation of Equation
(2). It is computed through the contact discontinuity ve-
locity of the Riemann problems u∗ solved at the interface
k/a. As a consequence, the numerical flux for Equation (2)
simply reads min(u∗, 0)(φa − φk).

Alternatively, a full conservative scheme with another
pressure law can be used (Allaire, Clerc, and Kokh 2002)
but the less time consuming approach of Abgrall is re-
tained here. The accurate interface capture is ensured by the
use of a second-order approximation Monotonic Upstream-
Centered Scheme for Conservation Laws (MUSCL) with
Barth limiter. Further details can be found in Golay and
Helluy (2007).

2.3. Time integration and local time-stepping
method

This section is dedicated to the presentation of the principles
of the Adams–Bashforth time integration and its implemen-
tation in our model. This approach has been shown to signif-
icantly decrease the computational cost compared to classi-
cal Runge–Kutta time integration which needs intermediate
computations. The Runge–Kutta approach is deeply related
to the size of the smallest control volume and therefore the
time step is severely constrained when the mesh is refined.
By contrast, even if the Adams–Bashforth is known to be
less stable and less accurate, it can be easily handled in the
framework of local time stepping (as described below) to
save computational time (see for instance, Altmann et al.
2009 or Ersoy, Golay, and Yushchenko 2013).

Equation (6) is first integrated over the time interval
[0, T ] subdivided such that tn+1 = tn + δtn with δtn the
time step.

The Adams–Bashforth method of order m consists in
replacing the numerical flux of Equation (6) by a Lagrange
polynomial interpolation of the same order (Hairer, Nørsett,
and Wanner 1993). Note that this explicit approximation is
built with the fluxes previously computed and stored and
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4 F. Golay et al.

then the integration of Equation (4), in the case of interest,
i.e. the second-order Adams–Bashforth, leads to

wk(tn+1) = wk(tn)

−
∑

a

(
δtn

hk

Fk(tn) − δt2
n

2δtn−1 hk

(Fk(tn) − Fk(tn−1))

)
,

(7)

where hk= |Ck |∑
a |∂Ck/a | . The main advantage of the Adams–

Bashforth method is to avoid the computation of intermedi-
ate fluxes and thus facilitate a local time-stepping approach
(see Ersoy, Golay, and Yushchenko 2013 for details).

2.4. Mesh refinement criterion and BB-AMR
scheme

2.4.1. Entropy production as a mesh refinement
parameter

As pointed out in Ersoy, Golay, and Yushchenko (2013),
many works are based on a-posteriori error estimates, which
are constructed from mathematical arguments for mesh
refinement (Zhang, Trépanier, and Camarero 2000). But
paradoxically, to our knowledge, very few works use a re-
finement criterion based on physical consideration, such as
entropy (Golay 2009). Based on this latter as a mesh re-
finement parameter, Ersoy, Golay, and Yushchenko (2013)
proposed an efficient adaptive numerical scheme. The aim
of this work is to detail the extension of this scheme to
three-dimensional cases and to demonstrate its efficiency.

It is well known that solving equations system (4) with
high accuracy is a challenging problem since solutions can
and will breakdown at a finite time, even if the initial data
are smooth, and develop complex structure (shock wave in-
teractions). In such a situation, the uniqueness of the (weak)
solution is lost and is recovered by completing system (4)
with an entropy inequality of the form:

∂s(w)

∂t
+ ∇ · ψ(s(w)) ≤ 0 , (8)

where (s, ψ) stands for a convex entropy–entropy flux pair
satisfying the relation

(∇wψ(s(w)))t = (∇ws(w))t Dwf (w).

This inequality in Equation (8) is used to select the physical
relevant solution. Moreover, the entropy satisfies a conser-
vation equation only in regions where the solution is smooth
and an inequality when the solution develops shocks. There-
fore, the entropy production can be seen as a ‘smoothness
indicator’ at the numerical level.

To this end and to be consistent with the discretisation of
Equation (7), a discrete version of the entropy production,
called numerical density of entropy production, is defined

as follows:

Sn
k = sn+1

k − sn
k

�tn
+

∑
a

(
δtn

hk

ψk/a(tn)

+ δtn
2

2δtn−1hk

(
ψk/a(tn) − ψk/a(tn−1)

) )
· nk/a. (9)

In this expression, ψk/a represents the entropy flux cal-
culated from the resolution of the Riemann problem at the
interface of cells k and a.

From a theoretical viewpoint, except during a shock,
the numerical density of entropy production given by (9) is
zero. But, at the numerical level, one can observe that it does
not vanish and hence can be used as mesh refinement crite-
rion. More precisely, Ersoy, Golay, and Yushchenko (2013)
have shown that, in the case of one-dimensional gas dy-
namics equations for ideal gas, the support of relative error
coincides with the support of numerical density of entropy
production. As a consequence, the mesh is automatically
refined only in regions where errors are identified.

The local entropy production must be compared to
the total entropy S̄= 1

|�|
∑

k Sn
k . Two coefficients 0 � αmin �

αmax � 1 are thus defined to determine the ratio of numer-
ical production of entropy leading to mesh refinement or
mesh coarsening.

For each cell Ck:

• if Sn
k > S̄αmax, the mesh is refined and split and,

• if Sn
k < S̄αmin the mesh is coarsened whenever it is

possible following the rule defined hereinafter.

Remark 1: The threshold parameters αmax and αmin are
determined empirically for each problem to get a good
compromise between computational cost and accuracy as
done previously in the one-dimensional framework (Ersoy,
Golay, and Yushchenko 2013). More precisely, αmin and
αmax allow to set a percentage of mesh refinement and mesh
coarsening with respect to the quantity S̄. It is not surprising
that these settings will deteriorate or improve the accuracy
of the numerical solution. For instance, the more αmin and
αmax are small, the more accurate are the results to the
expense of the computational time.

Finally, in the present case, for the two-fluid model, the
expression of entropy and entropy flux are

s = 1

2
ρu2 + c2

0ρ ln ρ − c2
0(ρW − ρA)ϕ,

ψ =
(

1

2
ρu2 + c2

0ρ(ln ρ + 1)

)
u.
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2.4.2. BB-AMR scheme

Keeping in mind the following requirements: parallel treat-
ment, fast computation and hierarchical grid (mesh level
cannot exceed 2 for stability reasons as pointed out in Er-
soy, Golay, and Yushchenko 2013), the main and challeng-
ing difficulty is to develop a suitable mesh refinement tool
which is related on the design of software data structures
and numerical scheme.

Moreover, as pointed out by several authors, the ex-
tension toward three-dimensional case is not an easy task.
Interesting works have been presented for two-dimensional
Cartesian grid or quad-tree (Berger and Colella 1989; Yiu
et al. 1996; Min and Gibou 2007; Zhang and Wu 2011),
octree for three-dimensional simulations (Losasso, Gibou,
and Fedkiw 2004; Fuster et al. 2009) and anisotropic AMR
(Coupez and Hachem 2013; Hachem et al. 2013).

This study aims to generalise the scheme proposed by
Ersoy, Golay, and Yushchenko (2013) with a finite volume
solver described in the previous section. This naturally leads
to quad-tree meshing in two-dimensional problem and oc-
tree meshing in three-dimensional problem.

The presence of a complex moving air–water interface
implies to re-mesh at each time step, which is clearly time
consuming. Keeping in mind our willingness to find a rele-
vant compromise between the contradictory aims of phys-
ical relevancy and numerical performance, we introduce
a Cartesian block-based mesh approach (somehow like in
Williamschen and Groth 2013; Zheng and Groth 2012).
The computational domain is split in several blocks. In
practice, each block corresponds to the initial unstructured
mesh composed of hexahedral cells. According to the mesh
refinement procedure (with respect to Sn

k , S̄, the mesh re-
finement level N ), each block is sub-divided in a Cartesian
way (2N−1nx, 2N−1ny, 2N−1nz), where (nx, ny, nz) stands
for the initial block discretisation.

As done in Ersoy, Golay, and Yushchenko (2013), for
each refined cells (or blocks), averaged values at time tn

are projected on each sub-cell and fluxes are computed
as simply as possible to avoid heavy computation. Conse-
quently, the level of two adjacent blocks cannot exceed 2 to
avoid oscillations (see Ersoy, Golay, and Yushchenko 2013
for further details). Thus, the interface defining two blocks
most of the time is a non-conforming one (as displayed in
Figure 2(b)).

Next, in order to spare proportionally the balanced dis-
tribution of cpu-load, the cells of each block are redis-
tributed in a fixed number of domains according to the
Cuthill–McKee numbering. The number of domain being
fixed, each domain are loaded in a given message passing
interface (MPI) process. The procedure is certainly not op-
timal but the synchronisation time between each domain
are almost the same, hence overall more efficient. Finally,
the renumbering and re-meshing being expensive, the mesh
is kept constant on a time interval, called AMR time step,
given by the smallest block (and not by the smallest cell)

and the maximum velocity. This procedure provides a good
compromise between computational time and accuracy.

Finally, let us illustrate the algorithm to define un-
structured meshes using the BB-AMR scheme in the two-
dimensional case (i.e. nz = 1 always). During the refine-
ment process, the number of blocks and domains are kept
always constant. As displayed in Figure 1(a), we consider an
initial mesh composed of nine blocks, assumed to be of level
1 (the coarsest level with nx = ny = 1), and decomposed
on three domains according to a Cuthill–McKee numbering
of the blocks (3 + 3 + 3 internal cells). For example, the
first domain (blue) is composed of three internal cells and
three adjacent ‘ghost’ cells in order to share to send/receive
information between domains. After some computations,
at the AMR-time T1, let us suppose that blocks 1 and 4
have to be refined. As displayed on Figure 1(b), the blocks
distribution into the domains has been modified (5 + 5 + 5
internal cells). One can observe that the new mesh is a non-
conforming mesh. For example, the cell belonging to the
block 2 is bordered by seven faces. If, at the AMR-time T2,
only block 1 exceeds the mesh refinement criterion, it has
to be refined. But, as the level of two adjacent blocks cannot
exceed 2 in order to avoid oscillations, block 2 must also be
refined. As displayed in Figure 1(c), the blocks distribution
has been modified (16 + 7 + 7 internal cells). The distribu-
tion is not well balanced because we distribute the blocks
and not the cells for sake of simplicity. This drawback is
reduced as the number of blocks is much bigger than the
number of domains.

The three-dimensional case is dealt in the same way.
For illustration purpose, Figure 2 shows an example of
three-dimensional block-based mesh decomposition (64 +
39 + 39 internal cells) with three domains and 27 blocks,
where the first block in the corner is of mesh refinement
level 3.

3. Numerical results

The model is here tested with classical two- and three-
dimensional test cases on dam-break problems over an ob-
stacle. The two-dimensional case is used to validate the
mesh decomposition strategy while the three-dimensional
case quantitatively tests the overall performance of the
presented model with and without BB-AMR scheme con-
fronted to experimental and state-of-the-art numerical re-
sults.

3.1. A two-dimensional dam-break problem

This test case was initially introduced to study a particle
method for simulating incompressible viscous flow with
a particular focus on water dispersion and droplets after
wave impact over an obstacle (Koshizuka, Tamako, and
Oka 1995). The experimental data obtained by Koshizuka,
Tamako, and Oka (1995) is here used to test the ability of
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6 F. Golay et al.

Figure 1. Example of two-dimensional BB-AMR with three domains and nine blocks. add to legend (a): (domain 1: 1,2,4; domain 2:
3,5,6; domain 3: 7,8,9) add to legend (b): (domain 1: 1,2; domain 2: 3,5,6,8,9; domain 3: 4,7) add to legend (c): (domain 1: ; domain 2:
2,3,5,6; domain 3: 4,7,8,9)

Figure 2. Example of three-dimensional block-based mesh with three domains and 27 blocks.

our adaptive strategy to represent the complex structure of
the air–water interface.

The test case configuration is shown in Figure 3. The
domain size is 4L × 2L with L = 14.6 cm. A water col-
umn (2L high and L wide) and a rigid obstacle (2h high
and h wide, with h=2.4 cm) are initially located at the

Figure 3. Collapse of water column Koshizuka, Tamako, and
Oka (1995).

left and centre of the domain, respectively. Air and water
are at rest at the start of the experiment. The selected nu-
merical parameters are CFL = 0.8, simulation time = 1.5
(s), 321 blocks, 120 cores, 321 domains or MPI process,
5 as the maximum level of mesh refinement, αmax (mesh
refinement parameter) = 0.2, αmin (mesh coarsening pa-
rameter )= 0.02. The simulation time is divided in 300
AMR time intervals. Symmetry boundary conditions are
imposed: zero normal velocity and zero normal gradients
of all other variables at the symmetry plane.

Figure 4 represents the comparison between experimen-
tal and numerical snapshots during the dam-break process
on the left and right columns, respectively. The selected
times are t = 0.2, 0.3, 0.4, 0.5 and 1 s. At t = 0.2 s, the
wave has already impacted the obstacle and a thick water
jet is ejected. At t = 0.3 and 0.4 s, the jet extends and hits
the right wall, inducing entrapment of a large air pocket,
which remains significant during the whole backwash and
retreat process observed at t = 0.5 and 1 s.

The macroscopic features of such complex hydrody-
namics, such as impact times against the obstacle and wall
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Figure 4. Two-dimensional dam-break problem, confrontation with experiments: experimental simulation Koshizuka, Tamako, and Oka
(1995) (left) – numerical simulation (right).

or jet shape and thickness, are rather well reproduced by the
model. Moreover, even though our model was not designed
to capture small-scale interface splitting and reconnection

processes, some of the droplets or packets of droplets are
captured as displayed on the right column of Figure 4 at
t = 0.4, 0.5 and 1 s. Increasing the level of refinement,

D
ow

nl
oa

de
d 

by
 [

Fr
éd

ér
ic

 G
ol

ay
] 

at
 0

0:
53

 2
1 

Fe
br

ua
ry

 2
01

5 



8 F. Golay et al.

Figure 5. Initial configuration for two-dimensional dam-break problem: mesh (left), density (centre), mesh refinement level (1–5)
per block (right).

leading to more cells, will improve the accuracy of the nu-
merical description of such processes, but this is not the
aim of this work.

The initial configuration for the numerical test case is
shown in Figure 5. Five levels of mesh refinement are used
(see Figure 5, right part). The mesh is initially denser in
the areas of interest, i.e. the water phase and around the
interface and then progressively coarsens in the air phase
when moving away from the water column. Figures 6 and 7
represent the behaviour of the dynamic mesh driven by the
numerical density of entropy production at time t = 0.2
and 0.4s. The mesh is observed to remain and/or become
the finest in the most active regions of the flow, i.e. in-
terfacial, impact or sheared areas. This overall compared
evolution of the collapsing water column with experiments
demonstrates the relevancy of our refinement criterion, in
particular when tracking the air–water interface. Note that
the number of cells varies from 70,000 and 100,000 dur-
ing all the simulation for an elapsed computing time about

5 hours. The present case shows the performance of the
automatic mesh refinement strategy. Here, the numerical
scheme is parallel and we have used more MPI process
than cores based on a simple meshing strategy, one block
is put in one domain. Such a simple procedure is of course
rather time consuming as the load of the processors is not
well balanced because of the required synchronisation at
each time step. As explained previously and illustrated
in the following three-dimensional cases, this synchroni-
sation issue can be addressed by the use of BB-AMR
scheme.

3.2. A three-dimensional dam-break problem
without AMR block-based mesh
decomposition

In order to test the efficiency of the model, we focus on
the well-known three-dimensional dam-break experiments
carried out by Kleefsman et al. (2005). This test case being

Figure 6. Two-dimensional dam-break problem at t=0.2 s. (a) Mesh; (b) density; (c) density of numerical entropy production; (d) mesh
refinement level per block (1–5); (e) experiment Koshizuka, Tamako, and Oka (1995); (f) mesh refinement criterion per block.
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Figure 7. Two-dimensional dam-break problem at t=0.4 s. (a) Mesh; (b) density; (c) density of numerical entropy production; (d) mesh
refinement level per block (1–5); (e) experiment Koshizuka, Tamako, and Oka (1995); (f) mesh refinement criterion per block.

both highly dynamic and strongly three-dimensional as well
as well documented by pressure sensors and wave gauges, it
has been widely used to evaluate the performance of several
numerical models such as volume of fluid (VOF) method
(Kleefsman et al. 2005), Smoothed Particle Hydrodynamics
(SPH) method (Lee et al. 2010) or Eulerian-Lagrangian
method (Vincent et al. 2010).

The initial configuration of the problem as well as sen-
sors location are shown in Figure 8. The setup consists in a
hexahedral block of fluid collapsing in a three-dimensional
pool and impacting a rectangular rigid obstacle on a flat
bottom (see Kleefsman et al. 2005 for detailed descrip-
tion). The computational domain is 3.22 m long, 1 m high
and 1 m width. The obstacle is located from x = 0.6635
m of the tank. The base-fixed mesh is splitted into 24 do-
mains refined around the obstacle. Each domain is devoted
to one process on the cluster. The numerical results are first
qualitatively compared to Kleefsman’s video recording in
Figure 9 and quantitatively compared in Figure 10 to the ex-
perimental data and published numerical results mentioned
hereinbefore.

Figure 9 shows a detailed qualitative comparison be-
tween Kleefsman’s numerical results (left column), experi-
mental video recording (central column) and our numerical
results (right column) at times t = 0.4, 0.6, 1, 1.8, 2 and
4.8 s. The identification of the exact position of the experi-
mental free surface is limited by the flow aeration observed
in video recordings. One notes however the very satisfying
overall agreement between both experimental and numeri-
cal Kleefsman’s data and our results. The successive steps
of the experiment are qualitatively well described by our
numerical model, including the dambreak before the im-
pact at t = 0.4 s, the first impact on the obstacle t = 0.6 s,
the reflection on the wall t = 1 s, the formation of the first

reflected wave t = 1 s and the flow return after the second
reflection on the right boundary t = 4.8 s. The comparison
between numerical results reveals the fundamental differ-
ence between models. Kleesfman’s model (Kleefsman et al.
2005) produces a variety of small-scale structures, such as
centimetric secondary surface waves or deformations and
water fragmentation in drops, while our model shows a
much regular aspect of the free surface. At this stage of
the qualitative analysis, and recalling that none of the mod-
els properly resolves the air–water mixture at the capillary
scale, it appears difficult to identify which one of the nu-
merical methods produces the better approximation of the
real physical phenomenon.

The qualitative analysis showed that our model nicely
compares with existing experimental and numerical results
for a fully three-dimensional wave impact case. Our numeri-
cal results are now quantitatively compared to experimental
data of Kleefsman et al. (2005) in terms of pressure (sensor
P 1) and free surface height (gauge H2). Similar compar-
isons with experiments performed on gauge H4 and sensor
P 7 data (not shown here) showed the same level of agree-
ment. Figure 10 shows the temporal evolution of pressure
and free surface elevation for a 6 s run comparing exper-
imental data and numerical predictions provided by our
model and a set of other published numerical results. Let
us first focus on the comparison between the experiments
(dotted line) and our model. At t = 0 s, the dambreaks but,
as the P 1 location is not reached by water, both pressures
correspond to atmospheric pressure (Figure 10, left plot).
Around t = 0.45 s, the water impacts the obstacle. One
notes the simultaneous violent increase of pressure for both
numerical and experimental data. The numerical pressure
peak is less intense than the experimental one. As the water
flows around and above the obstacle and then reflects on
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10 F. Golay et al.

Figure 8. Dam-break problem: domain geometry and sensors points from http://www.math.rug.nl/∼veldman/comflow/dambreak.html.

Figure 9. Free surface elevation computed by Kleefsman (left), the experimentation (centre) and our simulation (right) at t =
0.4, 0.6, 1, 1.8, 2, 4.8 s (c = 20 m.s−1).
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Figure 10. Comparison between three numerical models (Kleefsman et al. 2005; Vincent et al. 2010; Lee et al. 2010) and the present
one. Top: free surface elevation (H2 gauge). Bottom: pressure at P1 sensor.

the left wall, the pressure at P 1 continuously decreases.
After t = 1.8 s, the obstacle is submerged by the reflecting
wave, which induces a slight increase of pressure observed
on both experimental and numerical results. One notes here

the appearance of a small delay between experiments and
model. The pressure then still decreases until the arrival
of the second reflected wave. The wave amplitude is rather
well reproduced by the model but it comes with a delay
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12 F. Golay et al.

Figure 11. Number of cells during the computation.

around 0.3 s and a smoother shape. Further comparisons
are performed with experimental wave height for gauge
H2 (Figure 10, left plot). The agreement between numer-
ical and experimental wave heights is quite satisfactory.
Both incoming and reflected waves are nicely reproduced
by the model. Some differences are observed, in particular
for the return wave which arrives with a slight delay around
0.3 s and a loss of amplitude.

Despite some discrepancies between model and ex-
perimental results, Figure 10 demonstrates the ability of
the present numerical in describing the whole dam-break
process. Kleesfman’s experiments have also recently been
used as a benchmark test for several other numerical mod-
els. A comparison here is proposed between the presented
model, the truly incompressible smoothed particle hydro-
dynamics of Lee et al. (2010), the NS–volume of fluid
sub-mesh method (VOF-SM), model with hybrid Eulerian–
Lagrangian resolution of the transport equations by Vincent
et al. (2010) and Kleefsman’s NS–VOF model (Kleefsman
et al. 2005). Figure 10 shows a quantitative comparison be-
tween the four models and the experimental data for water
height at H2 gauge (left graph) and pressure at P 1 sensor
(right graph). One notes first that both water level and pres-
sure evolution are macroscopically well described by all
numerical models, except the pressure peak during the first
impact which is poorly described by the SPH method. Some
differences are observed between models but their detailed
description is not the aim of this work. The main conclu-
sion of the proposed comparison is to highlight that our
mathematical and numerical model nicely compares with
state-of-the-art heavier numerical methods in a quantitative
point of view.

3.3. A three-dimensional dam-break problem
with AMR block-based mesh decomposition

The previous section demonstrated that our simple two-fluid
model is, at the least, competitive with heavier numerical
models. The BB-AMR method described in this paper is

now introduced and tested against the same Kleefsman’s
experiment (Kleefsman et al. 2005). Numerical parame-
ters are CFL = 0.8, 3628 blocks, 48 cores, 48 domains or
MPI process, 4 levels of mesh refinement, αmax = 0.2 and
αmin = 0.02 as mesh refinement and coarsening parameters,
respectively. Symmetry boundary conditions are imposed.
The simulation time (4.8 s) is divided in 240 AMR time
intervals.

The model accuracy in describing flow dynamics be-
ing unchanged, we restrict our comments to the numerical
aspects of the computation. Figure 11 shows the evolution
of the total number of cells. It is observed to evolve from
800,000 cells up to about 1 500,000 cells. By contrast with
Coupez and Hachem (2013) and Hachem et al. (2013), the
number of cells is not prescribed, but prescribing the maxi-
mum of mesh refinement level and the parameters αmin and
αmax is sufficient to prevent a number of cells out of control.
As seen in Figure 12 (left), the distribution of cells on the 48
domains follows the flow evolution (Figure 12, right plot)
as explained in Section 2.4.2 and maintains a well-balanced
processors load. Finally, the present simulation, performed
with the standard Runge–Kutta time integration on 48 In-
tel X5675 cores, is achieved in 10 hours. The same test
case simulated without BB-AMR but with a faster Adams–
Bashforth time integration (3 levels) on 12 Itanium II cores
is nearly five times longer.

4. Concluding remarks and perspectives

This paper reports on numerical simulation of two-phase
dam-break flows over an obstacle. The presented math-
ematical model is based on previous works of Helluy
et al. (2005), Golay and Helluy (2007), and Sambe et al.
(2011). The model has been specifically developed to sim-
ulate violent three-dimensional air and water flows, such
as breaking or impacting waves. A set of assumptions is
made to establish the best compromise between comput-
ing costs and physical relevancy in the considered phys-
ical framework. As such, this can be considered as an
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Figure 12. Domains due to the BB-AMR scheme (left) and air-water interface (right) at time 0.4, 0.6, 1.0, 2 s.

alternative ‘intermediate’ approach between full NS solvers
and simplified shallow water models. It is expected that such
approach, which provides access to fully three-dimensional
simulations at a rather reasonable computing cost, can bring
a great insight into a variety of coastal and marine engineer-
ing problems.

The model is based on an artificial linearised pressure
law for low Mach regime. This artificial pressure law in-
duces several interesting effects from mathematical and nu-
merical viewpoints described above and in previous related
papers. The novelty of the present work is to extend the
multi-scale adaptive scheme proposed by Ersoy, Golay, and
Yushchenko (2013) to our three-dimensional hyperbolic
equations. The automatic mesh refinement process is per-
formed thanks to an original criterion: the numerical den-
sity of entropy production. The increase of computational
costs caused by the re-meshing procedure is outweighed by
the introduction of an efficient BB-AMR allowing an easy
and fast parallel implementation and computation. Through
several two- and three-dimensional wave impact test cases,
the overall numerical approach is validated. In particular,
the entropy production appears to be a relevant criterion
for automatic mesh refinement process, which leads to bet-
ter describe the regions of interest (interfaces and impact
zones) and to drastically reduce computational time.

On-going developments of the model focus on the op-
timisation of the artificial sound celerity, with the prospect

of introducing a spatially and temporally variable value. As
this approach can virtually be applied to any hyperbolic
system, longer term extensions of the method will concern
the application to shallow water models and fluid-structure
interaction issues.
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