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a b s t r a c t

This paper reports on a numerical investigation of solitary wave breaking over a sloping bottom covered
withmacro-roughness elements.Wave breaking is simulated by solving Euler equationswith a two phase
incompressible flowmodel. The hyperbolic system of the conservation laws is solvedwith a finite volume
discretization on an unstructured grid. An artificial compressibility approach allows the use of a fully
explicit scheme for an efficient parallel implementation. The numerical model is based on a low Mach
number preconditioning and a second order Riemann solver. Several test cases are performed to analyze
the role played by macro-roughness on the breaking dynamics. The influence of the macro-roughness
elements on the solitary long wave breaking is shown to depend on two dimensionless ratios D/A and
H/A, where D, H and A are the separation distances between themacro-roughness elements, the height of
the elements and thewave amplitude, respectively. Significant effects are observed for large values of D/A
and H/A. The successive cycles of impact/splash-ups/rebounds are strongly impaired. Three-dimensional
wave breaking simulations are presented, showing the robustness of the method for modeling complex
wave-structure interactions.

© 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

Carrying wind-induced or seismic energy from far–distant
offshore areas, waves are a preponderant force in the near-
shore zone and an essential parameter in beach morphodynamics
and coastal structure engineering. As it propagates to the shore,
the relatively well organized dynamics of offshore waves is
transformed into a wide range of motions of different types and
scales, see e.g. [1]. A major research effort, sustained over several
decades, has brought great insight to our knowledge of the surf
zone hydrodynamics, widely affected by breaking waves [2,3].
Wave breaking is generally themost dominant phenomenon in the
near-shore energy budget. It therefore appears that improving our
predicting capacities of wave breaking is of primary importance.
In particular, impact kinematics and run up on structures and
beaches are drastically important in the case of hazardous events
like storms, surges and tsunamis. Coastal communities clearly
benefit from the protection offered by natural (coral reefs, rocks,
mangroves) or engineered (buildings, concrete blocks, jetties)
obstacles. Indeed, research works have recently been engaged to
quantify the effectiveness of such barriers in mitigating coastal
impacts (e.g. [4]).
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In that context, the present study aims at numerically analyzing
the wave breaking over a sloping bottom covered by macro-
roughness. By contrast to skin friction which only acts on the
bottom shear stress, the presence ofmacro-roughnessmodifies the
whole flow field, i.e. by accelerating and decelerating the flowup to
the free surface. Our primary objective is thus to understand how
the roughness elements will affect the breaking dynamics.

Different numerical approaches are generally used formodeling
wave transformation reaching the shore. On one hand, models
based on Boussinesq equations are fast but unable to compute
wave breaking [5,6]. On the other hand, the classical full
Navier–Stokes solvers allow relevant and accurate results all along
the wave shoaling and breaking processes [7–11]. However, the
wave breaking process is a very complex phenomena, involving
intense turbulence with a wide variety of length-scale and strong
mixing between air and water. The detailed description of the
whole physics including three-dimensional viscous and turbulent
dissipation and surface tension effects often leads to unacceptable
computation time on standard computers, see e.g. [12]. Similarly,
it has been shown that SPH methods on 3D problems lead to
prohibitive computation times [13].

As the present study aims at finding an efficient compro-
mise between computation costs and physical relevancy, an al-
ternative numerical method is proposed. It is based on a fast
three-dimensional two phase flow solver, with a finite volume dis-
cretization on unstructured grids with subdomains decomposition
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Fig. 1. Wave breaking: solitary wave and sloping beach covered with macro-
roughness elements.

Fig. 2. Validation case: comparison with the experimental study of Li and
Raichlen [28] on the basis of the Grilli’s wave breaking case [29].

allowing an efficient parallel implementation. For the present
work, the model basis has been validated on experimental [14]
and numerical test cases with convincing numerical performances
and computational time, see [15]. The method has next been
improved by the selection of an isothermal model and relevant
numerical techniques in [16]. Both viscous and turbulent dissi-
pations are neglected in order to avoid the discretization of the
Laplacian operator and allow to use a fast hyperbolic solver. Equa-
tions of conservation are solved in a single domain by introducing
a state equation depending on the volume fraction of water and air
[17,18]. The equation of state of our average mixed model is arti-
ficial, but numerically relevant. The volume fraction is thus trans-
ported without tracking or reconstructing the interface, as in VOF
methods (see e.g. [19]). Similar approaches have been successfully
compared to classical fully NS models on dam break and wave
breaking problems [11] and also been used to simulate violent aer-
ated flows [20]. It should be emphasized that energy dissipation is
not taken into account. The model applicability should be strictly
limited to the early stages of the breaking process. For longer times,
bottom friction and turbulence have amajor effect on the breaking
wave dynamics. As the model does not include this dissipation, it
would be meaningless to evaluate late features from the present
computation, such as run up height. However, in the selected test
cases, thewave breaking is a violent plunging breaking, the splash-
up cycles occur in a very shallow water layer or even directly re-
bound on the macro-roughness elements. It is then assumed that
the breaking dynamics is dominated by impacts, pressure shocks
and large coherent structures rather than by bottom friction or a
well-established turbulent energy cascade.

The present study aims to pursue the work engaged in [21]
on the numerical modeling of wave-breaking in presence of
Fig. 3. Evolution of the fluid density contours during the solitary wave breaking process for case H00D00 (flat sloping bottom) at t = 0, 2, 2.5, 3, 3.25 and 3.5 s.
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Fig. 4. Compared evolution of the free surface profile during the solitary wave breaking process for cases H00D00 (flat sloping bottom) and H02D08 (rough sloping bottom),
at t = 1.75, 2, 2.25, 2.5, 2.75 and 3 s.
macro-roughness. The paper is organized as follows. The first and
second parts describe mathematical model and numerical meth-
ods, respectively. The third section presents the computational do-
main used for wave breaking test cases. Results and analysis are
proposed in the fourth section while the last part is dedicated to
conclusions and prospects.

2. Model and method

2.1. Mathematical formulation

An Eulerian 3D, compressible, inviscid two phase flow model
is used, leading to an hyperbolic system of conservation laws
for mass and momentum. An optimized artificial compressibility
approach at low Mach number allows a fully explicit scheme. The
computed variables, the density ρ, the velocity U⃗ , the pressure p
and the fraction of water φ depend on spatial position (x, y, z) and
time t . The volume fraction satisfies 0 ≤ φ ≤ 1, with φ = 1 in the
water and φ = 0 in the air. Considering the gravity g⃗ , neglecting
viscous effects and superficial tension, but introducing artificial
compressible effects, we consider the following 3D Euler equations
in the isothermal case:
∂ρ

∂t
+ div(ρU⃗) = 0 (1)

∂ρU⃗
∂t

+ div(ρU⃗ ⊗ U⃗ + p) = ρg⃗ (2)
∂φ

∂t
+ U⃗ .∇φ = 0 (3)

p = p(ρ, φ). (4)

In this model, the pressure depends on the volume fraction
which allows to distinguish between the liquid (water) and the gas
(air). An ‘‘Equation Of State’’ (EOS) has to be adequately chosen.
Let c(x, y, z, t) denote the sound speed. It is usually admitted in
physics that a flow is incompressible if the Mach number is lower
than 1/10. Here, the real (physical) Mach number is generally
much smaller, of the order of 1/400–1/1600. With an explicit
finite volume solver, the time step 1t is thus restricted by the CFL
condition:

1t = α
h

‖U⃗‖ + c
(5)

where α is the CFL number and h the space step (e.g. the
volume over the surface of the cell). Furthermore, it is known that
numerical accuracy decreases due to the low Mach number of the
flow. For those two reasons, an artificial pressure law has been
chosen inwhich the sound speed is approximately fixed to 20m/s.
A simple but efficient choice of EOS is the isothermal gas EOS [16]
that reads

p = c20 (ρ − (φρA + (φ − 1)ρW )) + p0 (6)

where ρA denotes the air density, ρw the water density, c0 the
artificial sound speed and p0 a parameter.
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Fig. 5. Evolution of the fluid density contours during the solitary wave breaking process for case H02D08 (rough sloping bottom) at t = 0, 2, 2.25, 2.5, 2.75 and 3 s.
Remark 1. This numerical model was previously based on a stiff-
ened gas EOS, involving an energy conservation equation [16]. Nu-
merical results showed that, in the case of a solitarywave breaking,
the isothermal EOS is physically and numerically relevant. It allows
a significant CPU time saving by avoiding penalizing CFL conditions
due to fast pressure oscillations.

Remark 2. In the present computations, the flow velocitywill typ-
ically be of the order of 1m/s. An optimized value of artificial sound
speed c0 = 20m/s has been chosen to limit, on one hand, the com-
pressibility effects and, on the other hand, the numerical diffusion
and the CFL constrain.

Remark 3. Our pressure law has no physical meaning inside the
mixture zone 0 < φ < 1 induced by numerical diffusion effects.
The air–water mixing is a complex phenomena. The numerical dif-
fusion and the thickening of the interface should never be assimi-
lated as a relevant tracer of the mixing between air and water. The
next step of themodel development,which is already engaged, is to
implement an efficient interface sharpening method to minimize
the spurious free surface diffusion [22]. Recent studies have been
engaged to provide a more physically relevant description of the
mixed zone [23]. However, further developments and comparisons
with experiments must be performed before the implementation
of such tool in the present code.
2.2. Numerical method

A finite volume approximation with an exact Riemann solver
(Godunov scheme) is used. To avoid pressure oscillations of
the Godunov scheme occurring in multi-fluid cases, the Abgrall
method [24] preserves from the occurrence of a moving con-
tact discontinuity. This condition leads to a non-conservative dis-
cretization (Eq. (3)). To use a fully conservative scheme, it would
be necessary to consider a pressure law imposing pressure equilib-
rium of the two components [17,25]. In order to get the interface
with accuracy, a second order approximation in time and space
(MUSCL) is used. Time discretization is explicit (midpoint Euler)
and space discretization is based on slope reconstruction. In two-
fluid problems, it is often necessary to perform an additional slope
limitation at the interface between the two fluids. For these rea-
sons, the Barth limiter [26], which is faster and gives quite good
results with competitive computing time in spite of a small dis-
tortion of the interface, has been selected. Details concerning the
numerical methods can be found in [16]. As explained in the intro-
duction, the effects of molecular and turbulent viscosities on the
breaking process are here neglected.

3. Wave breaking simulations

3.1. Computational domain

Several numerical simulations of solitary wave breaking over a
sloping bottom have been performed. The computational domain
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Fig. 6. Evolution of the vorticity fields and velocity vectors during the solitary wave breaking process for case H00D00 (flat sloping bottom) at t = 0, 2, 2.5, 3, 3.25 and 3.5 s.
is 25 m long and 2.5 m high (Fig. 1). The bottom is flat for x <
5.225 m and sloping for x > 5.225 m following B(x, y) = (x −

5.225)/15. The initial condition is a stable solitary wave computed
with the Tanakamethod [27], which is an incompressible potential
solution of the Euler equations. The crest of the solitary wave is at
A = 0.6 m over the still water level, except for the Li’s case where
A = 0.45m. Amirror condition is imposed on the lateral sides. The
Courant–Friedrichs–Levy number is fixed to 0.9. In order to reduce
computation time, a parallel version of the finite volume scheme
is implemented, using the library Message Passing Interface (MPI).
A regular mesh, made of hexahedra, is split into 12 sub-domains.
Each sub-domain is devoted to one process on the cluster (CPUs
Itanium II at 1.5 GHz). The 2D simulations (about 1 million of cells,
2827×375) require 2 days CPU time and the 3D simulations (about
9.5 million of cells, 1052 × 180 × 50) require about 12 days.

3.2. Description of the test cases

An ensemble of seven numerical simulations has been carried
out, see Table 1. The first one, referred to as the Li’s case, is
dedicated to the validation with the experimental results of Li and
Raichlen [28].

The six others, called H00D00, H01D04, H02D04, H03D04,
H02D08 and H02D12, are performed to understand how the
presence of macro-roughness (MR hereinafter) can affect the wave
breaking process. Recall here that, by MR elements, we refer to
bed forms which extend far above the equivalent boundary layer
Table 1
Summary of the test cases.

Case name A (m) H (m) D (m)

Li’s case 0.45 Flat Flat
H00D00 0.6 Flat Flat
H01D04 0.6 0.1 0.4
H02D04 0.6 0.2 0.4
H03D04 0.6 0.3 0.4
H02D08 0.6 0.2 0.8
H02D12 0.6 0.2 1.2

on flat bottom and are expected to produce accelerations and
decelerations in the flow field all the way to the free surface.
The reference case, H00D00, is the flat sloping bottom presented
in [21]. Five rough bottom cases have then been simulated to
analyze the breaking dynamics modifications and to understand
the influence of MR elements physical parameters. The height and
separation distance of the rectangular 0.2 m width elements are
presented in Table 1.

3.3. Validation case on a flat sloping bottom

The validation of the numerical results from the wave prop-
agation until the jet impact, including shoaling and overturning
processes, is based on the wave breaking study on a flat slop-
ing bottom first proposed by Grilli et al. [29]. They used a two-
dimensional fully nonlinear potential flow model to calculate
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Fig. 7. Evolution of the vorticity fields and velocity vectors during the solitary wave breaking process for case H02D08 (rough sloping bottom) at t = 0, 2, 2.25, 2.5, 2.75
and 3 s.
various characteristics of solitary waves propagating within a con-
stant depth and then shoaling and breaking on several different
slopes. This case has then been experimentally studied by Li and
Raichlen [28] and is referred here as the Li’s case. Fig. 2 shows a
comparison of the experimental and numerical free surface pro-
files at times t = 2.97, 3.15, 3.31 and 3.45 s. One can note the good
agreement between experiments and numerical predictions. The
wave steepening, the overturning dynamics and the impact po-
sition are well predicted. Some discrepancies can be observed in
the wave shape in particular just before the impact (t = 3.31 and
3.45 s), but the general agreement is very satisfactory regarding
our fast numerical model.

For the overall breaking dynamics after the impact, a compari-
son can be done with existing numerical studies, see e.g. [30]. The
restrictions exposed in the introductive section are recalled here:
as turbulence and viscous effects are not taken into account, the
model applicability is limited to the first stages of the breaking
process during which it can be assumed that breaking dynamics
is dominated by impacts, rebounds and large scale vortical struc-
tures. The results presented here are therefore restricted to short
times (t < 3.5 s). The breaking process is described in Fig. 3 for
the flat sloping bottom case H00D00, which is used hereinafter as
the reference case for the study of macro-roughness influence (see
Table 1). Fig. 3 presents contours of fluid density at successive
stages of the breaking process.

The wave first propagates without deformation. About t = 2 s,
the shoaling process starts and the wave progressively steepens
and becomes more and more asymmetric during its propagation.
After t = 2.5 s, the front face of the crest becomes nearly vertical
and the breaking process starts, converting potential energy into
kinetic energy. A fluid jet is ejected from the wave crest, and free
falls under the action of gravity. The jet then impacts on the flat part
of the free surface, inducing a characteristic overturning motion.
The splash-up process develops when the jet rebounds on the
free surface and probably partly pushes up the underlying water
previously undisturbed. The overturning motion then repeats
twice, each successive cycle of jet ejection/impact/splash-up being
weaker than the previous one. Gas pockets are trapped into the
vortices cores. The comprehensive validation for this complex
case will necessarily require 3D high resolution experiments.
However, these numerical results can be qualitatively compared
with existing numerical study [30] or experiments [31]. This
confirms the interest of our approach in which, for the selected
cases, the early stages of wave breaking can be adequately
represented even if turbulence and friction effects are neglected.

3.4. Influence of the macro-roughness elements

3.4.1. Comparison between flat and rough cases
To understand the overall effect of MR, let us compare first the

reference flat sloping bottom case H00D00 with the intermediate
rough case H02D08. The compared evolution of the free surface for
both cases during the breaking process is presented in Fig. 4.
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Fig. 8. Influence of the separation distance between the macro-roughness elements on the solitary wave breaking—Compared evolution of the free surface profile for cases
H00D00, H02D04, H02D08, H02D12.
Fig. 9. Compared vorticity fields at t = 2.25 s for cases H02D04 (left) and H02D08.
One can note first that the presence of MR elements affects the
free surface profile during the shoaling process, i.e. even before the
wave breaking. The free surface is perturbed by small oscillations
of few centimeters in amplitude and around 0.5 m in wave length.
The origin of such humps will be explained later. At t = 2.5 s, the
jet is close to the impact for theMR casewhereas the reference case
has not even reached the critical breaking slope. It is clear that both
shoaling and wave breaking processes are accelerated by the MR
and the breaking point appears earlier in time and space. Until the
impact occurs, the wave overturning is very similar for both cases,
see H00D00/t = 3 s and H02D08/t = 2.5 s. Once the ejected
watermass impacts the free surface previously at rest, the breaking
dynamics is strongly affected by the presence of MR elements. It is
clearly seen in Figs. 3 and 5 which compares the evolution of fluid
density contours for both cases.

MR induce an earlier wave breaking, which leads to a jet
impact in deeper water. It can be seen by comparing Figs. 6
and 7 that a layer presenting of deficit of momentum develops
between the roughness elements due to the form drag. This is
balanced by a momentum excess confined in the upper part of
the wave that accelerates the wave crest and thus induces an
earlier breaking for the rough case. As the wave breaks lower on
the slope, the shoaling process is interrupted earlier than in the
flat reference case. This explains the wave amplitude difference
between rough and flat cases illustrated in Fig. 4. Moreover,
as the wave still propagates during the breaking process, the
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Fig. 10. Influence of the height of the macro-roughness elements on the solitary wave breaking—Compared evolution of the free surface profile for cases H00D00, H01D04,
H02D04, H03D04.
well-know overturning and successive cycles of jet ejection /
splash-up / rebounds are strongly impaired by the presence of MR.
The splash-up dynamics depends on the MR location on the slope.
They can be either reinforced when encountering the roughness
elements (Fig. 5, t = 3 s) or possibly weakened by the impact in
deeper water.

The origin of free surface humps is clarified by comparing the
vorticity fields in Figs. 6 and 7, for flat and rough cases respectively.
Looking carefully at the vicinity of the MR elements for the rough
case (Figs. 6 and 7, t = 2 s and after), the presence of vorticity
patches around each element related to the presence of a sheared
zone can be identified. This deformation of the fluid streamlines
affects the flow all the way up to the free surface and eventually
affects the structure of the sheared layer over the free surface, as
shown for instance in Figs. 6 and 7 for t = 2 s. This explains
the free surface disturbances noted for the rough case in Fig. 4.
For t > 2 s the vorticity is much more intense and irregular, in
particular in the air phase in the vicinity of the water jet. It
should be noted here that the quite turbulent aspect of fluid flow
in the air has to be considered with caution. Several tests have
been performed which showed that decreasing the height of the
domain enhances the turbulent activity in the air. The vertical
extension of the computation domain has then been chosen in
order to be a satisfactory compromise between CPU time and
physical relevancy. However this spurious effect is limited to the
air flow, which can possibly increase the interface diffusion, but
no significant influence on the water phase dynamics has been
observed during the wave breaking process.

Hence, the influence of the presence of MR elements for the
presented case H02D08 can be summarized as follows: (i) an
earlier and deeper breaking point, (ii) significant streamlines
deformations around the MR elements all the way to the free
surface, (iii) a strong disturbance of the successive cycles of
impact/splash-ups/rebounds and (iv) an expected smaller extent
of run up on the slope.

3.4.2. Parametric study
Parametric study over the six cases presented in Table 1 has

showed the important role played by the separation distance D
between theMRelements. This is demonstrated by the comparison
of the free surface profiles shown in Fig. 8. One can note that,
first, the location of the breaking point as well as the time for the
wave overturning and the jet impact are only weakly affected by a
varying D. The comparison of free surface profiles during the wave
shoaling and overturning shows that free surface disturbances
observed previously and attributed to themodifications of the flow
topology by MR are enhanced for a large D (case H02D12) and
damped for a small D (case H02D04). A stronger influence of D
is observed on later stages of the wave breaking. For a small D
(case H02D04), the overall dynamics is quite similar to the flat
case and the successive splash-up cycles are well defined at least
for t < 3.5 s. For a large D, the late breaking stages are strongly
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Fig. 11. Evolution of the fluid density contours during the solitary wave breaking process for case H03D04 at t = 0, 2, 2.25, 2.5, 2.75 and 3 s.
impaired by the presence of MR (cases H02D08 and H02D12). The
tendency to disturb the splash-up cycles, by either reinforcing or
weakening the process depending on the location of the MR on
the bottom slope, is enhanced by increasing D, e.g. in Fig. 8 for
t = 2.75 s and t = 3 s. A closer view of vorticity fields in the
vicinity of MR elements at t = 2.75 s for cases H02D04 and
H02D12 is presented in Fig. 9. The effect of separation distance
D on the vorticity fields is clearly identified. For a small D (left
part of the figure), the MR elements are too close to allow the
circulations induced by the form drag to penetrate and develop
between them. An almost continuous sheared layer is formed on
top of the MR and the effect on themain flow is nearly comparable
to a reduction of the water depth. This in turn induces an earlier
wave breaking compared to the flat sloping bottom case as shown
in Fig. 8. For large separation distances, circulation cells develop
in the wake of each MR element and affect the propagating wave
all the way to the free surface. Let us now analyze the influence
of the height H of the MR elements on breaking dynamics. Fig. 10
compares the free surface profile evolutions for cases H00D00,
H01D04, H02D04, and H03D04. An observed tendency is steeper
waves and earlier overturnings for an increasingH . On later stages,
H is observed to play a preponderant role on the wave breaking.
For sufficiently small roughness (case H01D04 in Fig. 11), the
splash-ups/rebounds cycles are not significantly affected by the
presence of MR. Increasing H induces strong disturbances (case
H03D04 in Fig. 12) with encapsulation of air pockets between MR
elements.
The effect of MR on the breaking process depends on the height
and separation distance of the MR elements, with respect to the
wave and the slope parameters. For a basic analysis, the effects of
local slope, wave steepness, currents and wind are neglected. The
breaking point is assumed to be reachedwhen thewave amplitude
A increases up to a given percentage of the local depth, as proposed
by [32]. Note that for the strong plunging breakers studied here, it
is expected that the critical value largely exceeds the commonly
used value and is closer to 1. This simply indicates that at the
breaking point, the wave amplitude and the local depth are related
and can be used indifferently as the normalizing parameter for H
and D. Keeping in mind that a much larger number of simulations
should be performed to propose a comprehensive parametric
studywith a regime diagram, general trends on the influence ofMR
on the breaking of solitary waves can however be deduced from
the present data. The soliton amplitude A = 0.6 m is used here
as the normalizing parameter. The influence of the MR separation
distance is then conditioned by the dimensionless ratio D/A. On
one hand, for D/A < 1, no circulation cells develop between the
MR elements and the effect on the main flow is nearly comparable
to a reduction of water depth inducing an earlier wave breaking.
One the other hand, when D/A > 1, circulation cells develop in
the wake of each MR element affecting all the fluid column and
disturbing the free surface. Furthermore, the successive cycles of
impact/splash-ups/rebounds are strongly impaired, with ejection
of water when the flow encounters MR elements, and the run
up distance is expected to decrease. The influence of the macro-
roughness height depends then on the dimensionless ratio H/A.
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Fig. 12. Evolution of the fluid density contours during the solitary wave breaking process for case H01D04 at t = 0, 2, 2.25, 2.5, 2.75 and 3 s.
For H/A < 0.25, the only effect of MR is to induce earlier wave
breaking. When H/A > 0.25, the overall breaking dynamics is
modified, with strong disturbances of the splash-ups cycles and
encapsulation of large air pockets between roughness elements.

The role played by the air entrapment on the wave breaking
process is not obvious. However, interesting observations can be
done by comparing the cases H03D04 and H01D04, shown in
Figs. 11 and12 respectively. For the small roughness case (H01D04)
the fluid layer is too shallow and the MR are too small to allow
entrapment of significant gas pockets between the MR elements.
For sufficiently high MR (H03D04 case), air pockets generated by
the splash-up/rebounds cycles can be trapped between the MR
elements, as can be seen for t = 2.75 s and t = 3 s. The presence
of such air pockets tends to prevent the jet rebounds. This can be
observed by comparing the first splash-up cycle (t = 2.25 s and
t = 2.5 s) for which the jet impacts and rebounds on pure water
and the second cycle (t = 2.5 s and t = 2.75 s) for which the jet
impacts nearly over a gas pocket and the rebound is inhibited. The
sequence of impact/splash-up/rebound cycles is thus broken and
the wave collapses, producing a kind of swash tongue sliding on
the top of the MR elements (see Fig. 11 for t = 3 s).

3.5. 3D results

Fully three-dimensional solitary wave breaking over macro-
roughness elements have been performed to assess the ability of
the numerical model to simulate two phase flows over complex
topography. The geometry is a 3D extension of the 2D case with
a 0.5 m width. Symmetric conditions are imposed on the lateral
boundaries. MR elements (height 0.2m, length 0.2m, width 0.1m)
regularly spaced by 0.8 m are located only on the lateral part of the
bottom (see Fig. 13).

The 500 kg.m−3 isodensity surfaces evolution at t = 2.625, 3,
3.375, 3.75, 4.125 and 4.5 s is shown in Fig. 13. The shoaling process
is only weakly affected by the presence of MR, i.e. no significant
transverse destabilization is observed until t = 2.625 s. From
t = 3 s, the overturning motion is accelerated over the bottom
region covered by MR elements. After the jet impacts, the wave
breaking becomes clearly three-dimensional. On one hand, the
breaking over MR elements is quite similar to those observed in
the previous 2D cases with successive splash-up cycles strongly
affected by the obstacles and entrapment of air pockets. On the
other hand, the flow over the smooth region of the bottom is faster
and extends much further than over the rough region. It is also
observed that on the upper part of the sloping bottom, the water
penetrating between the MR elements first comes laterally from
the rapid flow of the wave breaking over the smooth region, rather
than from above. The overall wave front is no more uniform and
horizontal vortical structures are formed.

For coastal protection concerns, it could be expected that a
randomMR distribution and height would generate a wide variety
of vortical structures, both in size and direction. It should lead to
stronger momentum transfers and therefore more dissipation of
the wave energy. This hypothesis has obviously to be confirmed by
further simulations.
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Fig. 13. Three-dimensional solitary wave breaking over macro-roughness elements. Sequence of 500 kg.m3 isodensity surfaces at t = 2.625, 3, 3.375, 3.75, 4.125 and 4.5 s.
4. Conclusion

In this paper, numerical simulations of solitary wave breaking
are performed solving Euler equations for a two phase flow model
based on a hyperbolic system of conservation laws. In continuity
of the work presented in [21], the physical aim of the study is
to understand the influence of macro-roughness (MR) elements
on the wave breaking dynamics. Viscosity and turbulence are not
considered in the equations system restricting the applicability of
the model to the early stages of breaking. However, the selected
test cases are strong plunging breakers, in which the splash-up
cycles take place in thin water layers or directly impact on the
MR elements. It is thus expected that the breaking dynamics
is dominated by impacts, pressure shocks and large coherent
structures rather than by bottom friction or a well-established
turbulent energy cascade.

This approach is validated by the satisfactory results obtained
for the breaking on a sloping bottom with and without roughness
elements. Generally observed features on flat sloping bottom,
such as overturning motion, entrainment of air pockets, splash-up
occurrence, dynamics generated by plunging breaking waves and
generation of coherent vortex structures are well reproduced by
the model. The influence of the MR elements on the solitary wave
breaking is shown to depend on two dimensionless ratios D/A and
H/A, where D,H and A are the separation distance between the
MR elements, the height of the elements and the wave amplitude,
respectively. Significant effects are observed for large values of
D/A andH/A. The successive cycles of impact/splash-ups/rebounds
are strongly impaired and the run up distance is expected
to be reduced. Keeping in mind that a much larger number
of simulations and comparisons with laboratory experiments
and field measurements should be performed to propose a
comprehensive parametric study for engineering purposes, the
present results are expected to be useful to estimate the defensive
potential of coastal structures. As an illustration of the efficiency
of the numerical model in simulating complex wave-structure
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interactions, a fully three-dimensional solitary wave breaking
simulation over MR elements is presented.

The numerical prospects mainly concern interface compression
and mesh refinement methods to improve the interface descrip-
tion. Further developments will also include the implementation
of turbulent and viscous effects in order to describe the later stages
of the breaking process and evaluate the run up height.
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