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Numerical schemes for low Mach wave breaking
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In this work, we describe a finite volume scheme for the computation of incompressible air–water
flows. We use an artificial compressibility approach that permits us to use a completely explicit scheme.
We describe successively the low Mach preconditioning of the scheme, the Riemann solver and then the
non-conservative approach that is used to suppress velocity-pressure oscillations, the second order
extensions and the parallel implementation. Then this is applied to the simulation of the breaking of a
wave on a 15% slope.
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1. Introduction

The numerical simulation of wave breaking has a long

history (for a survey by Grilli, see Helluy et al. 2005).

There are mainly two methods of approximation:

. The boundary integral elements method (BIEM) relies

on a hypothesis of potential flow. The Poisson equation

on the potential under the free surface is transformed into

a non-linear, time-dependant integral equation thanks to

the Green function. The method is quite efficient and

permits a computation up to the reconnection of the jet

with high precision (Grilli et al. 1989).

. The other method relies on the resolution of the complete

incompressible Navier–Stokes equations coupled with a

special treatment at the free surface. It is more general

and also valid after the reconnection. If the treatment of

the air–water interface is based on moving mesh

techniques (Lagrangian approach), it is called a front

tracking method. If the computation is performed on a

fixed grid, it falls in the category of front capturing

methods. Examples of front capturing methods for this

king of flows can be found in many papers as, for

example, Guignard et al. (2001), Biausser et al. (2004)

and Vincent et al. (2004), etc.

In this paper, we study an original front capturing

method for computing general incompressible air–water

flows and apply it to a 2D wave breaking over a reef. The

main idea is to take into account compressibility effects in

the model, even if the flow is clearly incompressible. The

main advantage of this approach is that it is possible

to avoid implicit schemes in the computation of the

pressure, as it is usual in classical incompressible

approaches. We have already tested successfully the

method in a previous paper (Helluy et al. 2005), including

comparisons with experiments and other methods.

Artificial compressibility methods have been already

widely employed in wave breaking simulation (Guignard

et al. 2001, Chanteperdrix et al. 2002, etc.). The two

novelties are: a physical low Mach number precondition-

ing and the use of a non-conservative scheme in order to

improve the precision.

We concentrate here on several improvements of the

method in order to envisage realistic 3D computations. In

Helluy et al. (2005), the mesh was regular, while we use

curvilinear meshes here. The finite volume Godunov

scheme that is implemented would be convenient for

arbitrary unstructured meshes but we use here the

Cartesian topology of the mesh to avoid the storage of

the gradients of the unknowns at the centroids of the

control volumes. The Cartesian mesh also permits an

easier parallel implementation of the scheme. In Helluy

et al. (2005), we also solved the energy conservation law.

We will try to avoid this computation by employing an

isothermal model.
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The paper is then organized as follows:

. In Section 1, we first state two mathematical models for

compressible air–water flows: an isothermal Euler

model (“isothermal model”) and a complete Euler

model with an energy conservation law (“energy

model”). We show how it is possible to compute low

Mach flows by an adequate tuning of the pressure law

coefficients. This physical “preconditioning” is crucial

to avoid too constraining CFL conditions and to achieve

acceptable precision. We show that the two models lead

to a well-posedness of the Riemann problem that is at

the heart of the Godunov finite volume method.

. In Section 2 we recall, thanks to 1D experiments, that the

classical conservative finite volume schemes have a very

bad behavior at the air–water interface (pressure

oscillations). We adapt a trick by Abgrall and Saurel

(described in Abgrall 1988, Abgrall 1996, Barberon et al.

2003, Gallouët et al. 2003) in order to avoid these

oscillations in the energy model. The trick is based on a

non-conservative resolution of the air fraction evolution.

We show that the trick also works with our isothermal

model, thanks to the linearity of the pressure law.

. Section 3 is devoted to the presentation of the finite

volume scheme. We first present the first order version,

together with the non-conservative correction. We also

introduce several second order extensions based on the

MUSCL§ Van Leer (1979) approach. Two slope limiters

are tested: the Barth limiter described in many textbooks

(as Godlewski and Raviart 1996) and the WLSQRk

limiter. The WLSQR limiter is a variant of the WENO#

limiter. It is described in Fürst and Kozel (2002) and

included references. For the time integration we propose

to test two techniques: the MUSCL-Hancock approach

(Toro 1999) and the classical midpoint Euler approach.

. Section 4 is devoted to several 1D and 2D experiments:

“shock tube” test cases, the propagation of a stable

solitary wave over a flat bottom and finally the wave

breaking of a solitary wave arriving on a 15% slope.

2. Mathematical model

2.1 Compressible model for two-fluid flows

We wish to compute a two-fluid air–water flow in a three-

dimensional box V defined by

x¼ ðx1;x2;x3Þ ¼ ðx;y;zÞ[V,

xmin , x, xmax;

ymin , y, ymax;

zmin þbðx;yÞ, z, zmax:

8>><>>:
ð1Þ

The unknown are the density r, the velocity vector

u ¼ ðu1; u2; u3Þ ¼ ðu; v;wÞ; ð2Þ

the pressure p and the air fraction w of the two-fluid flow.

The unknowns depend on the position x [ V and the time

t [ ½0; T�.
The air fraction w satisfies

0 < w < 1;

wðx; tÞ ¼ 1 if x is in the air at time t;

wðx; tÞ ¼ 0 if x is in the water at time t:

We consider two compressible Euler models with

gravity. The first model assumes that the flow is

isothermal. Considering the conservation laws for the

mass and the momentum and the convection of the

fraction, it reads

rt þ ðruÞx þ ðrvÞy þ ðrwÞz ¼ 0;

ðruÞt þ ðru2 þ pÞx þ ðruvÞy þ ðruwÞz ¼ 0;

ðrvÞt þ ðrvuÞx þ ðrv 2 þ pÞy þ ðrvwÞz ¼ 0;

ðrwÞt þ ðrwuÞx þ ðrwvÞy þ ðrw2 þ pÞz ¼ 2rg;

wt þ uwx þ vwy þ wwz ¼ 0;

p ¼ pðr;wÞ;

ð3Þ

where g denotes the gravity (g ¼ 9.81 m s22). The

pressure p ¼ p(r, w) is a function of the density r and

the fraction w that will be discussed in Section 2.

The second model also considers the energy conserva-

tion law. It reads

rt þ ðruÞx þ ðrvÞy þ ðrwÞz ¼ 0;

ðruÞt þ ðru2 þ pÞx þ ðruvÞy þ ðruwÞz ¼ 0;

ðrvÞt þ ðrvuÞx þ ðrv 2 þ pÞy þ ðrvwÞz ¼ 0;

ðrwÞt þ ðrwuÞx þ ðrwvÞy þ ðrw2 þ pÞz ¼ 2rg;

ðrEÞt þ ððrE þ pÞuÞx þ ððrE þ pÞvÞx þ ððrE þ pÞwÞx

¼ 2rgw; wt þ uwx þ vwy þ wwz ¼ 0;

E ¼ 1þ
1

2
ðu2 þ v 2 þ w2Þ; p ¼ pðr; 1;wÞ: ð4Þ

The total specific energy E is the sum of the internal

specific energy 1 and the specific kinetic energy.

The pressure law p ¼ p(r, 1, w) will be discussed in

Section 2.

§MUSCL stands for monotonic upwind scheme for conservation laws.
kWLSQR stands for weighted least SQUare.
#WENO stands for weighted essentially non oscillatory.
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The two models above can be written in a unified

way

Wt þ FðWÞx þGðWÞy þHðWÞz ¼ SðWÞ: ð5Þ

In the first case, the conservative variables vector W,

the fluxes F, G, H and the source S are defined by

W ¼ ðr; ru; rv; rw; rwÞT ;

F ¼ ðru; ru2 þ p; rvu; rwu; rwuÞT ;

G ¼ ðrv; rvu; rv2 þ p; rvw; rwvÞT ;

H ¼ ðrw; rwu; rwv; rw2 þ p; rwwÞT ;

S ¼ ð0; 0; 0;2rg; 0ÞT ;

p ¼ pðr;wÞ:

ð6Þ

In the second case, they are defined by

W ¼ ðr; ru; rv; rw; rE; rwÞT ;

F ¼ ðru; ru2 þ p; rvu; rwu; ðrE þ pÞu; rwuÞT ;

G ¼ ðrv; rvu; rv 2 þ p; rvw; ðrE þ pÞv; rwvÞT ;

H ¼ ðrw; rwu; rwv; rw2 þ p; ðrE þ pÞw; rwwÞT ;

S ¼ ð0; 0; 0;2rg;2rgw; 0ÞT ;

p ¼ pðr; 1;wÞ:

ð7Þ

Very few theoretical results are established for the

general system of conservation law (5). It is generally

admitted (and proved in very particular situations) that

existence, uniqueness and stability hold if the system is

hyperbolic. We introduce the notation

n ¼ ðn1; n2; n3Þ;

FðV; nÞ :¼ FðVÞ·n1 þGðVÞ·n2 þHðVÞ·n3:
ð8Þ

The hyperbolicity condition states that for any unit

vector n ¼ (n1, n2, n3) the matrix

DF

DW
ðW; nÞ ¼ AðW;nÞ ð9Þ

is diagonalizable, with real eigenvalues. In the two

models (3) and (4) above, the computation of the

eigenvalues is a very classical exercise (see, for

example, Godlewski and Raviart 1996). The eigen-

values are u·n 2 c, u·n and u·n þ c where c is the

sound speed of the two-fluid mixture. Even when the

pressure law depends on the fraction w, the sound speed

is defined by the usual formula (where, as before, pr
and p1 denote the partial derivatives of p with respect

to r and 1)

c2 ¼ pr þ
p

r2
p1: ð10Þ

For the isothermal model (3), where the pressure law

does not depend on 1, it becomes

c2 ¼ prðr;wÞ:

According to (10), the hyperbolicity condition can also

be written

pr þ
p

r2
p1 . 0: ð11Þ

Finally, the partial differential equations (PDE) system

has to be supplemented by boundary conditions. In the

two cases here, we consider perfect wall conditions on

the boundary ›V. Considering the outwards unit normal

vector n ¼ (n1, n2, n3) to V on ›V, this wall condition

reads

u·n ¼ 0: ð12Þ

2.2 Pressure law

The flows that we wish to simulate are low Mach number

flows. The local Mach number M of the flow is the ratio

M ¼
juj

c
; juj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ v2

p
; ð13Þ

where c is the local sound speed defined by (10).

When the Mach number is uniformly small, the flow is

almost incompressible. In physics, one usually considers

that a flow is incompressible if the Mach M , 0.3. There

will not be big differences between a flow at Mach

M . 1/10 and a flow at Mach M . 1/1000. In our

configurations the material velocity juj will be of the order

of 1 m/s. The real sound speed in air is around 400 m/s and

the real sound speed in water is around 1600 m/s. If one is

interested only in the incompressible flow, it is allowed to

set an artificial sound speed in the two fluids. This fact will

be used in the sequel for two main reasons:

. avoid too constraining CFL stability condition; and

. limit the numerical viscosity and the bad low Mach

behavior of the finite volume schemes as described in

Guillard and Viozat (1999) or Turkel (1993).

Typically, we will set the sound speed c to the value

c0 ¼ 20 m=s ð14Þ

for air and water at a reference pressure and density. The

reference states are for the water

rW ¼ 1000 kg=m3; p0 ¼ 105 Pa; ð15Þ

and for the air

rA ¼ 1 kg=m3; p0 ¼ 105 Pa: ð16Þ

Remark 1. Let us note that in our computations the

material velocity will typically be of the order of 1 m/s.

Thus, it is dangerous to take a smaller sound speed that

could exaggerate the compressibility effects. On the other

hand a higher sound speed would dramatically increase

the numerical diffusion and the CFL constrain.

Numerical schemes for low Mach wave breaking 71
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In the case of the isothermal flow, we choose the

pressure law

p ¼ c2
0ðr2 ðwrA þ ð1 2 wÞrW ÞÞ þ p0: ð17Þ

In the case w ¼ 0 (or w ¼ 1), we recover a classical

isothermal pressure law for the water (or the air).

Remark 2. Let us note that our pressure law has no

physical meaning in the mixture zone 0 , w , 1. If we

were able to solve exactly the PDE, w would only take the

values 0 or 1. Because of the numerical diffusion, an

artificial mixture will appear in the simulations. In the

artificial mixture region, the pressures of the two fluids

will not equilibrate.

Remark 3. Several authors (as in Chanteperdrix et al.

2002) use a more physical approach in the mixture region.

By imposing the pressure equilibrium of the two

components, they construct a pressure law with a more

complex analytical expression.

In the second case, with the energy equation, the

pressure law is a so-called stiffened gas equation

p ¼ ðgðwÞ2 1Þr12 gðwÞpðwÞ: ð18Þ

The stiffened gas pressure law is a simple generalization

of the perfect gas pressure law. Indeed, when p(w) ¼ 0,

we recover a perfect gas law. The pressure law coefficients

have a particular form, proposed by Saurel and Abgrall

(1999)

1

gðwÞ2 1
¼ w

1

gA 2 1
þ ð1 2 wÞ

1

gW 2 1
;

gðwÞpðwÞ

gðwÞ2 1
¼ w

gApA

gA 2 1
þ ð1 2 wÞ

gWpW

gW 2 1
:

ð19Þ

The parameters gA, gW, pA and pW are determined in such

a way that the sound speed c ¼ c0 ¼ 20 m/s for the

reference states (15) and (16). Using (10), the sound speed

is given here by the formula

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðwÞðpþ pðwÞÞ

r

s
: ð20Þ

In practice, we choose gW ¼ gA ¼ 1:1 and the sound

speed equation written for w ¼ 0 and w ¼ 1 gives the two

missing parameters pA and pW (pA ¼ 299636 Pa,

pW ¼ 263636 Pa).

Remark 4. In order to obtain the uniqueness of the

solution, the system (4) or (3) has to be supplemented with

an entropy condition (Lax 1972, Godlewski and Raviart

1996). Now that we have chosen the pressure laws, it is

possible to state precisely the entropy condition, which

reads

ðSÞt þ divðTÞ < 0 ð21Þ

in a weak sense. Several choices are possible for the

entropy S and the entropy flux T. For the energy model (4),

we can take

S ¼ 2r ln
12 pðwÞ=r

rgðwÞ21

� �
;

T ¼ Su:

ð22Þ

For the isothermal model, we can take

S ¼
1

2
rðu2 þ v2 þ w2Þ þ c2

0r ln r;

T ¼ Suþ c2
0ru:

ð23Þ

2.3 Riemann problem

The Riemann problem consists of solving the following

one-dimensional problem:

Wt þ FðWÞx ¼ 0; Wðx; tÞ ¼
WL if x , 0;

WR if x . 0:

(
ð24Þ

This solution is supposed to be self—similar

Wðt; xÞ ¼ Rððx=tÞ;WL;WRÞ.

The resolution of the Riemann problem for the

compressible Euler equations is described in many

references. We can cite (Toro 1999) or (Godlewski and

Raviart 1996) for example. It appears that the computation

of the solution in the case of a two-fluid flow is very similar.

The details are given for example in Barberon et al. (2003).

As usual, the solution of the Riemann problem is made

up of constant states separated by shock waves, rarefaction

waves or a contact discontinuity. It is thus of the form

Rðj;WL;WRÞ ¼

WL if j , l21 ;

WI if lþ1 , j , l2;

WII if l2 , j , l23 ;

WR if lþ3 , j:

8>>>>><>>>>>:
The unknowns are:

. the two intermediate states WI and WII; and

. the velocities l21 < lþ1 , l2 , l23 < lþ3 .

The situation is depicted on figure 1.

Furthermore, if l2i , lþi (resp. if l2i ¼ lþi ) then the i-

wave is a rarefaction wave (resp. a shock of velocity

s ¼ l2i ¼ lþi ). When the i-wave is a rarefaction, the

computation of W ¼ Rðj;WL;WRÞ, for l2i , j , lþi is

classically carried out by expressing that the three

Riemann invariants are constant in the i-rarefaction

(Godlewski and Raviart 1996).

F. Golay and P. Helluy72
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On the other hand, we have pI ¼ pII ¼ p*. If no

vacuum occurs, we can also write uI ¼ uII ¼ u*. More-

over, it can be verified that the fraction w does not jump

in the 1-wave and the 3-wave. It gives wI ¼ wL

and wII ¼ wR. It is then classical to compute the 1- and

3-waves from the pressure p* common to the two

intermediate states WI et WII .

We have now to distinguish between the isothermal

model (3) and the energy model (4).

2.3.1 Isothermal case. In the case of the model (3), we

introduce the function

Hðra; rbÞ ¼

c0
ra2rbffiffiffiffiffiffiffi
rarb

p if ra , rb;

c0 ln ra
rb

� �
if ra . rb;

8><>: ð25Þ

in such a way that the velocities ua and ub on the two sides

of a 1-wave (shock or rarefaction) satisfy

ub ¼ ua þ Hðra; rbÞ: ð26Þ

In a 3-wave they have to satisfy a similar relation

ub ¼ ua 2 Hðra; rbÞ: ð27Þ

The density can be expressed as a linear function of the

pressure p and the fraction w

r ðp;wÞ ¼
p2 p0

c2
0

þ wrA þ ð1 2 wÞrW : ð28Þ

And in the two intermediate states, the pressure is constant

equal to p*, thus

rI ¼ r ðp*;wLÞ; rII ¼ r ðp*;wRÞ:

To solve the Riemann problem, we first have to solve

numerically for p*

u* ¼ uL þ HðrL; r ðp*;wLÞÞ

¼ uR 2 HðrR; r ðp*;wRÞÞ: ð29Þ

It can be proved that equation (29) admits a unique

solution

p* . pmin ¼ maxðpð0;wLÞ; pð0;wRÞÞ: ð30Þ

The proof is the same as for an isothermal one-fluid

Riemann problem (and can be found in Godlewski and

Raviart 1996, Toro 1999). It relies on the monotony

properties of the function

p* ! uR 2 uL 2 HðrR; r ðp*;wRÞÞ2 HðrL; r ðp*;wLÞÞ:

ð31Þ

Once p* is known, the rest of the solution can be

computed.

2.3.2 Energy model

In the case of the model (4), we introduce the functions

haðp* Þ ¼
1

ra

ðga þ 1Þðpa þ paÞ þ ðga 2 1Þðp* þ paÞ

ðga þ 1Þðp* þ paÞ þ ðga 2 1Þðpa þ paÞ
;

a ¼ L or R;

Faðp* Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp* 2 paÞ

1

ra
2 haðp* Þ

� �s
;

gaðp* Þ ¼
1

ra

pa þ pa

p* þ pa

� �1=ga

;

Caðp* Þ ¼
2

ga 2 1

1

ra
gaðpa þ paÞ

� �1=2

�
p* þ pa

pa þ pa

� �ðga21Þ=ð2gaÞ

21

 !
;

Xaðp* Þ ¼
Faðp* Þ if p* . pa;

Caðp* Þ if p* , pa;

(

Haðp* Þ ¼
haðp* Þ if p* . pa;

gaðp* Þ if p* , pa:

(

We then get

uI ¼ uL 2 XLðp* Þ;

uII ¼ uR þ XRðp* Þ;

1

rI
¼ HLðp* Þ;

1

rII
¼ HRðp* Þ;

and the Riemann problem is solved when p* is known.

If no vacuum region appears, we have to solve

u* ¼ uI ¼ uII ¼ uL 2 XLðp
*Þ ¼ uR þ XRðp

*Þ: ð32Þ

The following theorem holds.

Figure 1. Riemann solution in the (x, t) plane.

Numerical schemes for low Mach wave breaking 73
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THEOREM 1. Let pmin ¼ 2minðpðwLÞ;pðwRÞÞ. If

uR 2 uL # 2ðXLðpminÞ þ XRðpminÞÞ; ð33Þ

then the Riemann problem has a unique solution. The

pressure p* $ pmin is the unique solution of

uL 2 XLðp* Þ ¼ uR þ XRðp* Þ:

This result is quite similar to the case of the Riemann

problem for a single fluid. For the proof we refer

(for example) to Godunov et al. (1979), Godlewski and

Raviart (1996) and Rouy (2000). When inequality (33) is

not true, a vacuum has to be introduced. More details and

proofs are given in Barberon et al. (2003). In practice, for

the wave breaking simulations, we did not have to

introduce a vacuum to solve the Riemann problem in the

finite volume solver for the energy model.

As usual, the equation (29) or (32) on p* is solved by an

iterative Newton method. Typically, we have to numeri-

cally solve an equation of the form

f ðp*Þ ¼ 0; ð34Þ

where the function f is strictly monotone, concave and

satisfy

lim
p!pmin

f ðpÞ ¼ 21; lim
p!þ1

f ðpÞ ¼ þ1: ð35Þ

Depending on the initialization, it may happen that a

Newton iterate p is smaller than pmin. In this case, it is

necessary to restart the algorithm with a new p such that

pmin , p < p* : ð36Þ

3. Low precision of the conservative approach

3.1 Failure of the conservative Godunov scheme

This section is devoted to a short and simple presentation

of the pressure oscillations phenomenon in the con-

servative Godunov schemes. It appears that for very

simple one-dimensional test cases, the classical first order

conservative Godunov scheme gives very bad results on

every conservative form of the equations. We first exhibit

one of these test cases, which is a simple Riemann

problem.

Then, we present a fix proposed by Abgrall (1988) and

Abgrall (1996) that permits us to avoid the pressure

oscillations at the interface. The construction principle is

to require that the scheme preserves the moving contact

discontinuities. This condition leads to a non-conserva-

tive discretization of the transport equation for the air

fraction f. Let us recall that the conservative 1D

Godunov scheme also preserves moving contact dis-

continuities in the case of a one-fluid flow. The non-

conservative correction is only useful for multifluid

flows. We shall then show that this approach, initially

designed for the energy model, can be applied to the

isothermal model. Extensions to higher dimensions and

higher orders present no difficulty.

In this section, we restrict ourselves to a Riemann

problem initial condition. For the numerical experiments,

we choose the following values

Wðx; 0Þ ¼
WL if x , 1=2;

WR if x . 1=2;

(
ð37Þ

with

gW ¼ 1:1; gA ¼ 1:4; pW ¼ pA ¼ 0;

rL ¼ 10; uL ¼ 50; vL ¼ wL ¼ 0; pL ¼ 1:1£ 105; wL ¼ 1;

rR ¼ 1; uR ¼ 50; vR ¼ wR ¼ 0; pR ¼ 105; wR ¼ 0:

ð38Þ

We present numerical results obtained by a classical

Godunov scheme. The approximated system is in one

dimension written in a conservative form.

Consider a space step h and a time step t. The

discretization points are xi ¼ ih; i [ Z. The cells Ci are

centered on xi, Ci ¼�xi21=2; xiþ1=2½. We look for an

approximation of W in the cell Ci at time tn ¼ nt

Wn
i . Wðtn; xÞ; x [ Ci:

A general conservative finite volumes scheme reads

Wnþ1
i ¼ Wn

i 2
t

h
Fn
iþ1=2 2 Fn

i21=2

� �
:

In the case of the Godunov scheme, the numerical flux is

given by the resolution of a Riemann problem at each cell

interface xiþ1=2 and takes the form

Fn
iþ1=2 ¼ F R 0;Wn

i ;W
n
iþ1

� �� �
:

The time step has to satisfy a CFL condition for stability.

The CFL number at time n is defined by

b ¼
lmaxt

h
; lmax ¼ max

i
max uni 2 cni

�� ��; uni þ cni
�� ��� �

;

where cni is the sound speed computed by (10) in the cell i

at time n. We must ensure

b , 1:

The initial conditions are (38). We plot only the

pressure at time t ¼ 1 ms. The study interval is �0; L½
with L ¼ 1 m. The number of cells is fixed at N ¼ 400 and

the CFL number is b ¼ 0:7. We observe pressure

oscillations at the contact discontinuity (which is also

the material interface between the two fluids). The results

are shown in figure 2.
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Remark 5. Numerical experiments performed on very fine

meshes indicate that the numerical solutions of the

classical Godunov scheme indeed converge toward the

good solutions when the mesh step h! 0 (Gallouët et al.

2003). The convergence occurs in the L 1-norm and very

seldom in the L 1-norm: overshoots and undershoots are

often observed on r, u, p. Surprisingly, the w variable is

often more precise. The numerical rate of convergence is

the same as for one-fluid flow computations. An analysis,

in the BV space, of these phenomena is given in Berthon

and Nkonga (2002). Thus, it is more rigorous to say that

the Godunov conservative scheme suffers from a bad

precision instead of “oscillations”.

3.2 A non-conservative Godunov scheme

3.2.1 Energy case. The conservative scheme gives very

bad results and cannot be used for higher dimensional

simulations. This bad behavior is also observed when an

approximate Riemann solver is employed. This subject

has been studied in many papers: (Abgrall 1988, Karni

1994, Saurel and Abgrall 1999, Barberon et al. 2003, van

Brummelen and Koren 2003), etc. A second order

MUSCL extension would slightly improve the results

but it is not sufficient.

In order to improve the precision of the Godunov scheme

it is possible, as proposed by Saurel and Abgrall (1999), to

replace the conservative equation on the fraction

ðrwÞt þ ðrwuÞx ¼ 0; ð39Þ

by its non-conservative equivalent

wt þ u·wx ¼ 0: ð40Þ

Although these two equations are equivalent, their

approximations may be different. We now show that a

special non-conservative approximation give better results.

For this, let us consider a general Godunov scheme,

associated to an exact or approximate Riemann solver (the

VFRoe scheme; Gallouët et al. 2002, falls in this category).

We suppose that the scheme is conservative for the mass,

momentum and energy equations and only give up the

conservation of the mass fraction. We index by i þ 1/2

the solution of the Riemann problem at the interface beetwen

the cell i and the cell i þ 1. Suppose that we want to

approximate a general moving contact discontinuity of

constant velocityv and pressure p. To compute the conserved

quantities in the cell i at time n þ 1, the scheme reads

rnþ1
i ¼rni 2

t

h
ðruÞniþ1=22ðruÞni21=2

� �
;

ðruÞnþ1
i ¼ðruÞni 2

t

h
ðru2þpÞ

n

iþ1=22ðru2þpÞ
n

i21=2

� �
;

r1þr
u2

2

� �nþ1

i

¼ r1þr
u2

2

� �n

i

2
t

h
r1uþru

u2

2
þpu

� �n

iþ1=2

2 r1uþru
u2

2
þpu

� �n

i21=2

 !
:

ð41Þ

We now impose that the scheme preserves the moving

contact discontinuities, i.e. that unþ1
i ¼ uni ¼ v and

pnþ1
i ¼ pni ¼ p. We obtain

rnþ1
i ¼ rni 2

t

h
v rniþ1=2 2 rni21=2

� �
;

ðr1Þnþ1
i ¼ ðr1Þni 2

t

h
v ðr1Þniþ1=2 2 ðr1Þni21=2

� �
:

ð42Þ

But we have

r1 ¼ p w
1

gA 2 1
þ ð1 2 wÞ

1

gW 2 1

� �

þ w
gApA

gA 2 1
þ ð1 2 wÞ

gWpW

gW 2 1

� �
: ð43Þ

Figure 2. Godunov scheme, pressure (line: exact; dots: numeric). The contact is located at x ¼ 0.55.
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We deduce that necessarily, we must have

wnþ1
i ¼ wn

i 2
t

h
v wn

iþ1=2 2 wn
i21=2

� �
: ð44Þ

This is an upwind approximation of the transport

equation (40).

THEOREM 2. Any scheme that reduces to (44) for constant

velocity and pressure will then preserve moving contact

discontinuities.

We can also consider a more general pressure law of the

form p ¼ p0ðr1; r;wÞ. By inverting this relation, it is

possible to express the product r1 as a function of p,f and r

r1 ¼ g0ðp;w; rÞ:

Theorem 2 is still true if the function g0 is linear with

respect to w and r, for p fixed. This kind of problematic is

studied in Gallouët et al. (2003).

We propose now a scheme satisfying Theorem 2. First,

we define the interface values by the resolution of

Riemann problems at the points xiþ1=2:

Wn
iþ1=2 ¼ Rð0;Wn

i ;W
n
iþ1Þ:

For density, momentum and energy, the classical

conservative approach is employed:

rnþ1
i ¼rni 2

t

h
ðruÞniþ1=22 ðruÞni21=2

� �
;

ðruÞnþ1
i ¼ðruÞni 2

t

h
ððru2þpÞ

n

iþ1=22 ðru2þpÞ
n

i21=2Þ;

ðrEÞnþ1
i ¼ðrEÞni 2

t

h
ððrEþpÞuÞniþ1=22 ððrEþpÞuÞni21=2

� �
:

ð45Þ

On the other hand, an upwind non-conservative scheme is

used for the fraction. This non-conservative scheme is

based on the contact discontinuity velocity of the Riemann

problems solved at the points ðxiþ1=2Þ. It reads

wnþ1
i ¼ wn

i 2
t

h
min uniþ1=2; 0

� �
wn
iþ1 2 wn

i

� ��
þmax uni21=2; 0

� �
wn
i 2 wn

i21

� ��
:

ð46Þ

It is easy to check that the scheme (46) reduces to (44) for

constant velocity and pressure states.

We can also check that our scheme satisfies a maximum

principle. Indeed, (46) can be rewritten

wnþ1
i ¼ awn

i þ bwn
i21 þ cwn

iþ1;

a ¼ 1 2 b2 c;

b ¼
t

h
max uni21=2; 0

� �
;

c ¼ 2
t

h
min uniþ1=2; 0

� �
:

ð47Þ

The fraction wnþ1
i is a convex linear combination of wn

i ,

wn
i21 and wn

iþ1 under the CFL condition

t

h
max uni21=2; 0

� �
2 min uniþ1=2; 0

� �� �
< 1: ð48Þ

Our choice is slightly different from the one of Saurel and

Abgrall (1999), which is based on the approximate

Riemann solver of Rusanov. The Riemann solver of

Rusanov is known to be very diffusive. An exact Riemann

solver allows us to obtain more precise numerical results,

especially in the contact waves.

With the scheme (45) and (46), the results on the same

test case as above are given in figure 3. There is an evident

improvement.

3.2.2 Isothermal case. Now, we show that this approach

can be extended to the isothermal model.

First, we define the interface values by the resolution of

Riemann problems at the points xiþ1=2:

Wn
iþ1=2 ¼ Rð0;Wn

i ;W
n
iþ1Þ:

For density and momentum, the classical conservative

approach is employed:

rnþ1
i ¼ rni 2

t

h
ðruÞniþ1=2 2 ðruÞni21=2

� �
;

ðruÞnþ1
i ¼ ðruÞni 2

t

h
ðru2 þ pÞ

n

iþ1=2 2 ðru2 þ pÞ
n

i21=2

� �
:

ð49Þ

On the other hand, an upwind non-conservative scheme is

used for the fraction. This non-conservative scheme is

based on the contact discontinuity velocity of the Riemann

problems solved at the points ðxiþ1=2Þ. It reads

wnþ1
i ¼ wn

i 2
t

h
min uniþ1=2; 0

� �
wn
iþ1 2 wn

i

� ��
þmax uni21=2; 0

� �
wn
i 2 wn

i21

� ��
;

ð50Þ

The scheme preserves constant pressure and velocity

states because the density is linear with respect to f when

the pressure is fixed.

4. Finite volume in higher dimensions

4.1 First order scheme

In order to compute the solutions to (4) or (3) we have to

detail the finite volume method in higher dimensions. First,

the computational domain V is split in several open sets Ci,

i [ I ¼ {1; . . . ;N} called cells or finite volumes such that

1. <i[ICi ¼ �V; and

2. ;ði; jÞ [ I £ I; i – j ) Ci > Cj ¼ Y:

The time domain is also split in a sequence of intervals

�tn; tnþ1½ such that t0 ¼ 0, tP ¼ T , tn , tnþ1. The time step is

F. Golay and P. Helluy76
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denoted by tn ¼ tnþ1 2 tn. The solutions W are approxi-

mated in each cellCi and for each time tn by a constant vector

Wn
i . Wðx; tnÞ; x [ Ci: ð51Þ

The unknowns satisfyð
Ci

Wnþ1
i ¼

ð
Ci

Wn
i 2tn

ð
›Ci

F Wn
i ;W

n
j ;nij

� �
þtn

ð
Ci

SðWn
i Þ:

ð52Þ

In the right-hand side of (52), FðU;V; nÞ is the numerical

flux. Index j is for the cellsCj that are neighbors of the cellCi

along the boundary›Ci (figure 4). It means that along›Ci the

index j is a piecewise constant function. If the boundary ›Ci

has an intersection with ›V, the mirror boundary condition

(12) is used in order to extrapolate the outside state Wn
j .

An initial condition Wðx; 0Þ ¼ W0ðxÞ is used to start

the computation ð
Ci

W0
i ¼

ð
Ci

W0: ð53Þ

The vector nij is the normal unit vector on ›Ci that points

from Ci towards Cj.

The flux FðWL;WR; nÞ is based on an exact resolution

of the Riemann problem by neglecting the variations of the

solution in the directions orthogonal to n. Using notation

(8), the Riemann problem in the direction n consists of

finding a vector valued function ðj; tÞ! Vðj; tÞ solution of

Vt þ
›

›j
FðV; nÞ ¼ 0; j [ R; t . 0;

Vðj; 0Þ ¼
WL if j , 0;

WR if j . 0:

( ð54Þ

Thanks to the rotational invariance of the Euler equations,

it is equivalent, up to a change of referential, to solve the

problem (24). Let us note the unique entropy solution

Rðj=t;WL;WRÞ ¼ Vðj; tÞ; ð55Þ

and the solution of the Riemann problem at the interface

between (L) and (R) is noted

W* ¼ WðWL;WRÞ ¼ Rð0;WL;WRÞ: ð56Þ

The classical Godunov flux would be

FðWL;WR; nÞ ¼ FðW*; nÞ: ð57Þ

Figure 3. Saurel-Abgrall scheme, pressure (line: exact; dots: numeric).

Figure 4. Finite volume mesh.
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But here, we have to take into account the non-

conservative correction. This is done in the following

way. We introduce a new vector ~W that is made of the

usual conservative variables, except for the last com-

ponent rw, which is replaced by the non-conservative

variable w

fWW ¼ ðr; ru; rv; rw; rE;wÞT ðenergy modelÞ;

fWW ¼ ðr; ru; rv; rw;wÞT ðisothermal modelÞ: ð58Þ

The components of the numerical flux ~F are now equal to

those of the conservative Godunov flux F, except for the

last component, which is now

~f fWLWL ; fWRWR ; n
� �

5 or 6
¼ minðu*·n; 0ÞðwR 2 wLÞ: ð59Þ

And the scheme (52) is replaced by

ð
Ci

fWWnþ1

i ¼

ð
Ci

fWWn

i 2tn

ð
›Ci

~F fWWn

i ;
fWWn

j ;nij

� �
þtn

ð
Ci

S Wn
i

� �
:

ð60Þ

Remark 6. For the time integration of the source terms, we

have used a very simple scheme. It is known that more

sophisticated approaches are required when one needs to

capture precisely the rest states. We refer for example to

the pioneering work by Greenberg and Leroux (1996).

Here we are interested in unsteady computations and the

rough classical method is sufficient.

4.2 Second order extensions

It is well known that the first order version of the Godunov

scheme has a low precision. It is thus necessary to improve

the precision. We shall here use the slope reconstruction

technique together with a limitation procedure in order to

improve the space accuracy. For the time accuracy, we

shall test two methods:

. a second order Runge-Kutta scheme (midpoint Euler);

and

. the so-called MUSCL-Hancock time integration.

Remark 7. In the formula (60), it is clear that the

integration of the source term is already second order

accurate in space (because the midpoint integration rule is

second order accurate).

It is not possible to choose any variable for the slope

reconstruction in order to preserve the constant velocity-

pressure states. It appears that the reconstruction has good

properties in the

Y ¼ ðr; u; p;wÞ ð61Þ

variables for the energy model and in the variables

Y ¼ ðr; u; pÞ ð62Þ

for the isothermal model. We suppose that we have

obtained second order approximation of the mean values

Wn
i of the approximation at time n in the cells i. This also

gives a second order approximation of the primitive

variables Yn
i ¼ YðWn

i Þ in the centroids of the cells. By a

classical slope reconstruction technique, space slopes sni
and time derivatives rni are computed and the primitive

variables Y are now approximated by

Ynþ1=2ðxÞ ¼ Yn
i þ sni ðx2 xiÞ þ rni

tn

2
; x [ Ci: ð63Þ

s ¼

rx ry rz

ux uy uz

px py py

wx wy wz

8>>>>><>>>>>:
ðenergy modelÞ;

s ¼

rx ry rz

ux uy uz

px py py

8>><>>: ðisothermal modelÞ:

ð64Þ

We can compute the extrapolated values on the cell edges

Y
nþ1=2
ij ¼ Yn

i þ sni ðxij 2 xiÞ þ rni
tn

2
; ð65Þ

where xij is the center of the edge between Ci and Cj. Note

that, in general,

Yij – Yji: ð66Þ

We can also compute the values in the cells at time

nþ 1=2

Y
nþ1=2
i ¼ Yn

i þ rni
tn

2
:

It is then possible to go back to the variables W or fWW and

compute by an inverse change of variables

W
nþ1=2
ij ; fWWnþ1=2

ij ; W
nþ1=2
i and fWWnþ1=2

ij : ð67Þ

Then, we define the interface values by the resolution of

Riemann problems at the points xij in the direction nij

W* ¼ R 0;W
nþ1=2
ij ;W

nþ1=2
ji

� �
: ð68Þ
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The second order scheme now readsð
Ci

fWWnþ1

i ¼

ð
Ci

fWWn

i 2 tn

ð
›Ci

~F fWWnþ1=2

ij ;fWWnþ1=2

ji ; nij

� �
2 tn

ð
Ci

0 . . . 0; uni ·7wn
i

� �T
þ tn

ð
Ci

SðW
nþ1=2
i Þ: ð69Þ

Remark 8. The corrective term

2tn

ð
Ci

0 . . . 0; uni ·7w
n
i

� �T
ð70Þ

is required to achieve second order because the last

equation is now non-conservative. Indeed, in contrast with

the conservative case, we cannot apply the Stokes formula

to transform the volume integral into a surface integral.

For the first order scheme, the term (70) cancels because

the gradient of the approximate w cancels in each cell. It is

no more the case when w is linear in each cell. The second

order extension of non-conservative finite volume scheme

is studied for example in Sainsaulieu (1995).

In the energy model, the approximated gradient 7wn
i of

w in the cell Ci is simply the last line of the tensor sni ((64)).

In the isothermal model, the approximated gradient 7wn
i

is computed from the differentiation of the pressure

law (17)

7w ¼
7p2 c2

07r

c2
0ðrW 2 rAÞ

: ð71Þ

As before, 7p and 7r are extracted from sni in (64).

Using the special forms of the pressure laws (18) and

(17), it is easy to check that the second order extension of

the scheme still preserves the constant velocity-pressure

states. Let us remark that it would not be true with other

choices of the reconstructed variables than (61) or (62).

Classically, in the MUSCL-Hancock reconstruction

technique, the space slope is first constructed and limited

(two limiters will be given below). It is then easy to give a

time slope from the evolution equations on Y. Indeed, Y is

solution of a first order system of the form

Yt þ
X3

d¼1

BdðYÞYxd ¼ 0: ð72Þ

We thus set

rni ¼ 2
X3

d¼1

BdðYiÞYxd ; ð73Þ

where the partial derivatives Yxd are obtained from sni
in (64).

It is also possible to consider a time first order scheme

by setting

rni ¼ 0: ð74Þ

In this case, the MUSCL scheme present instabilities that

develop slowly. In the sequel, if only space slopes are

computed, we shall use a second order midpoint Euler

integration in time in order to improve the stability. It is

easy to check that the midpoint Euler integration does not

alter the preservation of constant velocity-pressure states.

We now address the several envisaged possibilities for

the space slope reconstruction. The first method is due to

Barth.

Consider a primitive variable q (any component of Y)

that has to be reconstructed from the cell values qi. First,

the gradient is estimated thanks to a discrete version of the

Green formula

volðCiÞ ~7qi ¼

ð
›Ci

qi þ qj

2
nij: ð75Þ

This gradient has to be limited in order to avoid

oscillations. The limiter a is the largest number that

satisfies

0 < a < 1; ;j;

a ~7qi·ðxij 2 xiÞ
�� ��jqj 2 qij:

ð76Þ

The limited gradient is then

7qi ¼ a ~7qi: ð77Þ

The second method is more recent and less diffusive. This

is the WLSQR reconstruction technique. The reconstruc-

tion in the cell i is a priori sought under the form

qiðxÞ ¼ qi þ 7qi·ðx2 xiÞ: ð78Þ

Ideally, on the neighbor’s cell we would like to have

;j; volðCjÞqj ¼

ð
Cj

qiðxÞ: ð79Þ

The system (79) is an overdetermined system of linear

equations. We thus decide to solve it in the least square

sense. But then, it is known that the resulting scheme will

be unstable. Indeed, the whole scheme would be linear and

thus cannot be total variation diminishing (TVD) as

proven by Goodman and LeVeque (1985).

Instead, we introduce weights noted vij and solve the

problem

7qi ¼ arg min
S

X
j

vij

ð
Cj

qi 2 qj þ S·ðx2 xiÞdx

 !2

:

ð80Þ

The weights are chosen in order to diminish the influence

of the qj for which the jump jqi 2 qjj is big

(shock detection). As suggested by Fürst and Kozel

Numerical schemes for low Mach wave breaking 79



D
ow

nl
oa

de
d 

B
y:

 [G
ol

ay
, F

ré
dé

ric
] A

t: 
13

:1
9 

31
 A

ug
us

t 2
00

7 

(2002), we choose

vij ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jqi 2 qjj þ hq0

p ; ð81Þ

where h . 0 is a small parameter and q0 is an order of

magnitude of the primitive variable q.

5. Application to wave breaking

5.1 Programming

For the implementation, we have chosen a regular mesh

made of hexahedra.

In order to avoid too long computations, we have also

implemented a parallel version of the finite volume

scheme, using the library message passing interface

(MPI). The SGI parallel computer is made of 12 CPUs

Itaniume II at 1.5 GHz. The operating system is Linuxw

RedHatw.

The domain is split into N equivalent sub-domains,

along the x-axis. For the 1D experiments we take N ¼ 1

and for the 2D validations we take always N ¼ 8 to speed

up the computations.

Because we have in mind an extension to 3D

computations, we decided to avoid the storage of the

gradients at the centers of the cells. It implies that it is

necessary, at the beginning of each time step, to exchange

two layers of cells on the left and right faces of the sub-

domains.

The implementation is completely 3D but in this paper

we present only 2D results (only one layer of cells in the y

direction).

5.2 1D validations

In the previous sections, we have proposed two

mathematical models for low Mach two-fluid flows. We

decided to simulate them by a Godunov scheme. We have

now to compare different options in order to select the

better compromise in term of CPU time and precision:

. energy or isothermal model;

. Barth or WLSQR limiter; and

. midpoint Euler or Hancock time integration.

The comparison is made on 1D academic Riemann

problems (shock tubes problem), in all these simple tests,

the y and z components of the velocity vector v ¼ w ¼ 0.

First, we verify that all the schemes preserve the constant

velocity-pressure states, which is true for all the options.

The second test consists of a two-fluid Riemann

problem. The initial condition is made of two constant

states defined as follows:

uL ¼ 0; pL ¼ 1:5105; wL ¼ 0 if x , 0;

uR ¼ 0; pR ¼ 1:0105; wR ¼ 1 if x . 0:

The density is computed by (28) in the

isothermal case and we take rL ¼ 1125; rR ¼ 1 for

the energy case. The left and right states are dis-

continuous at x ¼ 0. The computational domain is

(x [ ½210; 10�; y [ ½20:1; 0:1�; z [ ½20:1; 0:1�), and as

already mentioned, we consider a 3D finite volume grid:

100 cells in the x-direction and 1 cell in the y or z-

direction. A mirror condition is imposed on lateral sides.

The CFL number is fixed to 0.9.

The WLSQR scheme is known to be very accurate and

robust in the case of single fluid problems (Fürst and Kozel

Figure 5. Density of the isothermal model at t ¼ 0.25 s: (a) exact, (b) first order scheme, (c) Euler Barth scheme.
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2002), though it is CPU time expensive. But in the case of

two-fluid problems we have observed that it is often

necessary to perform an additional slope limitation at the

interface between the two fluids. For these reasons we

decided to use only the Barth limiter, which is much faster.

In this computation, we notice a perfect agreement

between the energy and the isothermal computations.

Thus, in figure 5, we plot the density along the x-axis only

for the isothermal model. Except naturally for the first

order scheme, all the other results are very similar. In

figure 6, we observe that the left rarefaction wave is best

resolved with a first order in time and second order in

space approximation.

The accuracy is similar for the other variables ( p and w),

except for the velocity as shown in figure 7. We notice

many oscillations, especially in the case of the first order

in time and second order in space scheme, as shown in

figure 8. This behavior is classical because the MUSCL

first order in time and second order in space scheme is

linearly unstable.

Figure 6. Density of the isothermal model at t ¼ 0.25 s: (a) exact, (b) first order scheme, (c) Barth scheme, (d) Euler Barth scheme.

Figure 7. Velocity of the isothermal model at t ¼ 0.25 s: (a) exact, (b) first order scheme, (c) Barth scheme, (d) Euler Barth scheme.
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We observe in figure 9 that the oscillations vanish with

an appropriate mesh refinement.

The CPU times are compared on table 1. As expected, the

isothermal model corresponds to the shortest

computations.

5.3 Solitary wave propagation

In this test case, we propagate a solitary wave on a flat

bottom. The precise boundary and initial conditions are

depicted in figure 10. The initial condition is a stable

solitary wave computed thanks to the method of Tanaka

(1986): this is an incompressible potential solution of the

Euler equations.

The crest of the solitary wave is at H1 ¼ 0:6 m

over the still water level. It propagates at a

phase velocity w ¼ 1:18
ffiffiffiffiffiffiffi
gh1

p
¼ 3:92 m=s. The domain

(x [ ½25:; 22:�; y [ ½20:1; 0:1�; z [ ½21:; 2:�) is approxi

mated by a coarse structured 3D finite volume grid: 600

cells in the x-direction, 1 cell in the y-direction and 90 cells

in the z-direction. A mirror condition is imposed on the

lateral sides. The CFL number is fixed to 0.9. We propagate

this solitary wave during 4 s (15.68 m).

In this case, we notice again that the WLSQR scheme

cannot be used without a supplementary slope limiter, and

the CPU time is prohibitive.

We also notice that the Hancock’s time integration

leads to local velocity oscillations in the air near the

air–water interface. These instabilities generate negative

density values. We were able to finish the computation

only by disconnecting the time gradient computation

when necessary. That’s why we prefer the midpoint

Euler time integration, which is confirmed to be more

robust.

Figure 8. Velocity at t ¼ 0.25 s: (a) exact, (b) isothermal first order, (c) isothermal Barth, (c’) energy Barth, (d) isothermal Euler Barth, (d’) energy
Euler Barth, (e) isothermal Hancock Barth, (e’) energy Hancock Barth.

Figure 9. Isothermal, Barth. Velocity at t ¼ 0.25 s:(a) exact, (b) 20 cells, (c) 100 cells, (d) 500 cells.
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We verify that the energy model and the isothermal

model are in excellent agreement. Therefore, results are

presented only with the isothermal model. As demon-

strated on table 2, the saving of CPU time is important.

This gain is due to several factors:

. there are less unknowns because we don’t consider the

energy equation;

. the Riemann solver is simpler and requires generally

less Newton’s iterations; and

. in the energy model, the sound speed is not constant. In

practice, we observe a more constraining CFL condition

in the air. Thus, the time step is bigger with the isothermal

model than with the energy model.

As shown in figure 11, where we plot the profile of the

water surface, the solitary wave is well propagated. As the

first order approximation is dissipative, the amplitude of

the wave diminishes. But with a second order approxi-

mation in space, the profile is improved. We again notice

that the Barth scheme gives quite good results with

competitive computing time, in spite of a small distortion

of the interface.

To improve the amplitude of the numerical wave, it is

enough to increase the number of cells. It is demonstrated

in figure 12, where we compare the water surface

computed with the isothermal model (first order in time

and Barth) on a coarse grid (600 £ 90) and on a finer grid

(1200 £ 180).

5.4 Two-dimensional wave breaking over a slope

Now, we intend to break the wave over a reef

(figure 13). The initial conditions are exactly the same

as in the previous case except for the bottom. We consider

at the right of x ¼ 5:225 a non-flat bottom equation

bðx; yÞ ¼ ðx2 5:225Þ=15. (see 1), in order to break

the solitary wave. The structured finite volume mesh is

naturally distorted after this point.

We found a perfect agreement between the isothermal

and energy model. But the isothermal model is faster

(table 3) so the investigation of 3D cases becomes more

tractable.

As for the solitary wave propagation, the first order

scheme is dissipative. The breaking of the wave seems to

be realistic (figures 14 and 15).

Table 1. CPU time.

Isothermal model (s) Energy model (s)

First order 0.3 1.1
Barth 0.5 1.3
Euler and Barth 1.0 2.5
Hancock and Barth 0.5 1.3

Figure 10. Propagation of a solitary wave with flat bottom.

Table 2. CPU time.

Isothermal model Energy model

First order 0 h 24 min 0 h 51 min
Barth 0 h 49 min 2 h 44 min
Euler and Barth 1 h 34 min 5 h 51 min

Figure 11. Wave profile (isoline w ¼ 0.5) for the isothermal model at t ¼ 4 s: (a) exact, (b) first order, (c) Barth, (d) Euler Barth.
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6. Conclusion

In this paper, we have presented a simple finite volume

method to simulate two-fluid incompressible flows. An

artificial compressibility is introduced in order to use

classical explicit schemes for compressible flows. A

Figure 12. Wave profile (isoline w ¼ 0.5) for the isothermal model at t ¼ 4 s: (a) exact, (b) 1200 £ 180 cells, (c) 600 £ 90 cells. Second order Barth
limiter in space. First order in time.

Figure 13. Wave breaking: solitary wave and reef.

Table 3. CPU time.

Isothermal model Energy model

First order 0 h 39 min 1 h 28 min
Barth 1 h 20 min 3 h 17 min
Euler and Barth 2 h 30 min 6 h 14 min

Figure 14. Water fraction: (a) initial data, (b) t ¼ 2.0 s first order, (c) t ¼ 2.0 s second order, (d) t ¼ 4.0 s first order, (e) t ¼ 4.0 s second order, (f)
t ¼ 4.5 s first order, (g) t ¼ 4.5 s second order, (h) t ¼ 5.0 s first order, (i) t ¼ 4.0 s second order.
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special tuning of the pressure law coefficients is necessary

to avoid CFL restrictions and bad precision (physical

preconditioning). A non-conservative treatment of the air

fraction is also necessary.

We have compared several options in order to select a

relevant scheme that will be now applied to 3D cases.

According to our experiments we observe that:

. the isothermal model permits to divide by 3 the CPU

time compared with the energy model;

. the Barth limiter is more robust and sufficiently precise

compared to the more sophisticated WLSQR limiter;

. the MUSCL-Hancock time integration is fast and

precise for 1D cases. But for 2D computations the

second order midpoint Euler time integration is more

stable and thus preferable; and

. the parallel version of the method is very easy to

implement and lead to interesting CPU gains.

We now plan to perform 3D wave breaking

computations as initiated by Biausser et al. (2004).

We also investigate possible improvements of the

precision by mesh refinement and/or higher order

interpolations.
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